首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sex-related difference in olfactory sensitivity to androstenone has been reported to occur during adolescence. More males than females exhibited anosmia to androstenone, or an increase in androstenone threshold with age. The current study addressed the question whether similar, sexually dimorphic effects of aging over puberty can also be found for androstadienone. A total of 102 subjects participated (36 females, 66 males). Similar to previous investigations, subjects were divided into a group of 47 individuals with a mean age of 13.3 years, defined as pre/peri-pubertal, and a group of 55 subjects with a mean age of 17.1 years, defined as post-pubertal. All subjects underwent tests for verbal abilities, general olfactory function, and measurements of androstadienone thresholds. The study provided the following major results: (1) Male subjects exhibited higher androstadienone sensitivity in the pre/peri-pubertal group as compared to the post-pubertal group. This difference was not observed in female subjects. Correspondingly, a negative correlation between age and androstadienone sensitivity was found for male subjects, but not for female subjects. (2) In contrast to this sex-specific change of the androstadienone odor threshold, verbal skills and odor identification abilities increased with age in all subjects regardless of their sex. In conclusion, the present observations confirm previous research on sex-differentiated effects of aging during puberty on sensitivity towards odorous steroids. While the underlying causes are unknown, it may be hypothesized that the decreased sensitivity could result from the increased endogenous levels of androstadienone in male subjects. Future studies should include both steroid and non-steroid odorants to further explore these age-related changes.  相似文献   

2.
Using a conditioning paradigm, the olfactory sensitivity of four spider monkeys and four pigtail macaques for a homologous series of carboxylic acids (n-propionic acid to n-heptanoic acid) was investigated. With only few exceptions, the animals of both species significantly discriminated concentrations <1 p.p.m. from the odorless solvent and in several cases individual monkeys even demonstrated thresholds <1 p.p.b. The results showed (i). both primate species to have a well-developed olfactory sensitivity for carboxylic acids, which for some substances matches or even is markedly better than that of species such as the rat or the dog and (ii). a significant correlation between perceptibility in terms of olfactory detection thresholds and carbon chain length of the carboxylic acids in both species tested. These findings lend further support to the growing body of evidence suggesting that between-species comparisons of the number of functional olfactory receptor genes or of neuroanatomical features are poor predictors of olfactory performance, and that general labels such as 'microsmat' or 'macrosmat'-which usually are based on allometric comparisons of olfactory brain structures-are inadequate to describe a species' olfactory capabilities.  相似文献   

3.
Carbon dioxide is a commonly employed irritant test compound in nasal chemesthetic studies because it is essentially free of olfactory stimulus properties. CO(2) is thought to act via hydration to H(2)CO(3) and dissociation to H(+) in nasal mucus, with resulting activation of acid sensors. However, transient changes in nasal mucosal pH have not been documented during CO(2) stimulation in humans. We placed a small pH probe on the floor of the right anterior nasal cavity during CO(2) stimulation in eight human subjects with historically high (>30%) and low (< or =20%) CO(2) detection thresholds. Three second pulses of CO(2) (15-45% v/v) paired with air in random order (12-15 s inter-stimulus interval; 60 s inter-trial interval) were administered by nasal cannula at 5 l/min. in an ascending series. For each subject, both a CO(2) detection threshold and suprathreshold psychophysical ratings [psi; labeled magnitude scale] were generated. All subjects showed phasic drops in pH associated with CO(2) stimulation (DeltapH). For all subjects combined, a positive correlation was apparent between applied [CO(2)] and both DeltapH and psi, as well as between DeltapH and psi themselves (P < 0.0001 for each comparison). Subjects with historically low CO(2) thresholds showed steeper dose-response curves for psi as a function of both applied [CO(2)] and DeltapH, but not for DeltapH as a function of applied [CO(2)]. For the six of eight subjects with measurable pH changes at threshold, DeltapH was positively related to log [CO(2) threshold] (P < 0.01). These data imply that variability in CO(2) detection thresholds and suprathreshold rating may derive from intrinsic differences in neural sensitivity, rather than differences in stimulus activation to hydrogen ion.  相似文献   

4.
The primary sensory neurons of the olfactory system are chronically exposed to the ambient environment and may therefore be susceptible to damage from occupational exposure to many volatile chemicals. To investigate whether occupational exposure to styrene was associated with olfactory impairment, we examined olfactory function in 2 groups: workers in a German reinforced-plastics boat-manufacturing facility having a minimum of 2 years of styrene exposure (15-25 ppm as calculated from urinary metabolite concentrations, with historical exposures up to 85 ppm) and a group of age-matched workers from the same facility with lower styrene exposures. The results were also compared with normative data previously collected from healthy, unexposed individuals. Multiple measures of olfactory function were evaluated using a standardized battery of clinical assessments from the Monell-Jefferson Chemosensory Clinical Research Center that included tests of threshold sensitivity for phenylethyl alcohol (PEA) and odor identification ability. Thresholds for styrene were also obtained as a measure of occupational olfactory adaptation. Styrene exposure history was calculated through the use of past biological monitoring results for urinary metabolites of styrene (mandelic acid [MA], phenylglyoxylic acid [PGA]); current exposure was determined for each individual using passive air sampling for styrene and biological monitoring for styrene urinary metabolites. Current mean effective styrene exposure during the day of olfactory testing for the group of workers who worked directly with styrene resins was 18 ppm styrene (standard deviation [SD] = 14), 371 g/g creatinine MA + PGA (SD = 289) and that of the group of workers with lower exposures was 4.8 ppm (SD = 5.2), 93 g/g creatinine MA+PGA (SD = 100). Historic annual average exposures for all workers were greater by a factor of up to 6x. No differences unequivocally attributable to exposure status were observed between the Exposed and Comparison groups or between performance of either group and normative population values on thresholds for PEA or odor identification. Although odor identification performance was lower among workers with higher ongoing exposures, performance on this test is not a pure measure of olfactory ability and is influenced by familiarity with the stimuli and their sources. Consistent with exposure-induced sensory adaptation, however, elevated styrene thresholds were significantly associated with higher occupational exposures to styrene. In summary, the present study found no evidence among a cross-section of reinforced-plastics workers that current or historical exposure to styrene was associated with a general impairment of olfactory function. When taken together with prior studies of styrene-exposed workers, these results suggest that styrene is not a significant olfactory toxicant in humans at current exposure levels.  相似文献   

5.
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.  相似文献   

6.
The equivalent mixture of cis-3-hexenol and trans-2-hexenal (hexenol/hexenal), 'green odor', is known to have a healing effect on the psychological damage caused by stress. Behavioral studies in humans and monkeys have revealed that hexenol/hexenal prevents the prolongation of reaction time caused by fatigue. In the present study, we investigated which brain regions are activated by the odor of hexenol/hexenal using positron emission tomography with alert monkeys. Regional cerebral blood flow (rCBF) in the prepyriform area (the primary olfactory cortex) was commonly increased by the passive application of odor: acetic acid, isoamylacetate or hexenol/hexenal. We observed rCBF increases in the orbitofrontal cortex (the secondary olfactory cortex) by these olfactory stimuli in two of three monkeys, and found no predominance of laterality of the activated hemisphere. Furthermore, rCBF increase in the cerebellum was observed in two of three monkeys, and the odor of acetic acid increased rCBF in the substantia innominata in all monkeys. In addition to these olfactory related regions, the anterior cingulate gyrus was activated by the odor of hexenol/hexenal. These findings suggest that the increase of rCBF in the anterior cingulate gyrus by the odor of hexenol/hexenal may contribute the healing effects of this mixture observed in the monkey.  相似文献   

7.
Previously, we have shown that delta4,16-androstadien-3-one modulates psychological state, reducing negative mood and increasing positive mood (Jacob and McClintock, 2000; Jacob et al., 2001a). In order to determine whether similar musky compounds also produce these effects, we compared the effects of androstadienone to those of androstenol and muscone, measuring the psychological states of 37 participants. Androstenol and muscone were chosen because they too have a musky odor at high concentrations, while androstenol is a steroid like androstadienone and muscone is not. In a controlled laboratory setting, we conducted a double-blind, within-subject, repeated-measures experiment counterbalanced for order of presentation. Under each participant's nose, a nanomolar amount of each compound was presented, masked by clove oil to minimize perceptible olfactory differences. Participants completed a baseline psychological battery and twice again at 25-min intervals after exposure. Androstadienone's effects on psychological state were unique in comparison with those of androstenol and with muscone. Exposure through passive inhalation, rather than dermal contact, was sufficient for these effects. Although this is additional evidence that androstadienone may be a pheromone, it is yet to be determined whether humans exude concentrations into the air adequate for social communication or process this chemical information within natural social contexts.  相似文献   

8.
Betchen  SA; Doty  RL 《Chemical senses》1998,23(4):453-457
Several fundamental questions remain enigmatic concerning human olfactory sensitivity, including (i) whether detection threshold differences exist between the two sides of the nose (and, if so, whether such differences are influenced by handedness) and (ii) whether bilateral (i.e. binasal) stimulation leads to lower thresholds than unilateral stimulation (and, if so, whether the degree of facilitation is inversely related to general olfactory ability). In this study, and well-validated single staircase procedure was used to establish bilateral and unilateral detection thresholds for the cranial nerve I stimulant phenyl ethyl alcohol in 130 right- and 33 left-handed subjects. No differences in sensitivity between the left and right sides of the nose were observed in either group. Bilateral thresholds were lower, on average, than unilateral thresholds when the latter were categorized in terms of left and right nares. However, the bilateral thresholds did not differ significantly from those of the side of the nose with the lower threshold. Overall smell ability, as measured by the University of Pennsylvania Smell Identification Test, did not interact with any of the test measures. These data imply that (i) the left and right sides of the nose do not systematically differ in detection threshold sensitivity for either dextrals or sinistrals and (ii) if central integration of left:right olfactory threshold sensitivity occurs, its effects do not exceed the function of the better side of the nose.   相似文献   

9.
We carried out a cross-sectional analysis of sister-chromatid exchanges (SCEs) and chromosomal aberrations induced by diepoxybutane (DEB) in lymphocyte cultures from 58 normal blood donors. DEB-induced SCE frequencies were measured in all subjects and chromosomal aberrations in 18. Analysis of variance was used to assess the contributions of exposure to organic solvents, age, smoking history, alcohol and coffee consumption, and red and white blood cell counts to variations in DEB-induced SCEs. In 10 individuals, the epoxide-detoxifying enzyme, glutathione (GSH)-S-transferase mu, was also measured. We observed a bimodal distribution of DEB-induced SCEs in the study population. Approx. 24% of the individuals were twice as sensitive to the induction of SCEs by DEB as the remaining 76%. Lymphocytes from persons sensitive to SCE induction by DEB contained a 4.4-fold increase in the number of DEB-induced chromatid deletions and exchanges. Within sensitive and resistant groups, significant interindividual variations in DEB-induced SCE frequencies were noted. Cigarette smoking was weakly associated with lower SCE frequencies within each group. Genetic deficiency in GSH-S-transferase mu was not correlated with increased sensitivity to SCE induction by DEB. Sensitivity to induction of SCEs by DEB can be rapidly determined and may be a marker of sensitivity to the induction of genotoxicity by certain classes of mutagens.  相似文献   

10.
Lobster olfactory sensory neurons have contributed to a number of advances in our understanding of olfactory physiology. To facilitate further study of their function, we have developed conditions allowing primary culture of the olfactory sensory neurons in a defined medium. The most common cells in the culture were round cell bodies with diameters of 10-15 micro m that often extended fine processes, features resembling olfactory sensory neurons. We discovered that acetylcholinesterase acted as a growth factor for these cells, improving their survival in culture. We also confirmed previous evidence from spiny lobsters that poly-D-lysine was a superior substrate for olfactory cells of this size and morphology. We then identified olfactory sensory neurons in the culture in two ways. Almost half the cells tested responded to application of a complex odorant with an inward current. An even more rigorous test was made possible by the development of an antiserum to OET-07, an ionotropic glutamate receptor homolog specifically expressed by Homarus americanus olfactory sensory neurons. It labeled a majority of the round cells in the culture, unequivocally identifying them as olfactory sensory neurons.  相似文献   

11.
In three experiments, subjects tracked intensity of nasal irritation during sustained presentation of carbon dioxide in the nose. Experiment 1 showed that: (i). functions of peak intensity vs. concentration and latency to first non-zero ratings agreed with published literature, thereby supporting the validity of the technique; (ii). on average, rated intensity peaked approximately 3-4 s after stimulus-onset and began to fall rapidly thereafter; (iii). large and stable individual differences in temporal dynamics occurred. Experiment 2 replicated experiment 1 with some methodological refinements. In experiment 3, application of the technique revealed that the nose regains sensitivity with very brief (300-500 ms) interruptions in presentation of carbon dioxide. In short: (i). the method developed here provides a temporally fine-grained tool to study the time-course of nasal irritation, and (ii). nasal irritation from carbon dioxide shows relatively rapid temporal dynamics.  相似文献   

12.
Gene manipulation and molecular biological techniques for the study of olfaction are well developed in mice, while electrophysiological properties of mouse olfactory sensory neurons have been less extensively investigated. We used the whole-cell voltage-clamp technique in mouse isolated olfactory sensory neurons to investigate both voltage-gated and transduction currents. Voltage-gated currents were composed of transient inward currents followed by outward currents with transient and sustained components. Of the tested olfactory sensory neurons, 12% responded to the odorant cineole with an inward current. Caged compounds were introduced into the cytoplasm through the patch pipette and flash photolysis of caged cyclic nucleotides activated an inward current in 94% of the cells. When the flash was localized at the cilia, the response latency, rising time and duration were shorter than when the flash illuminated the soma. The amplitude of the photolysis response was dependent on light intensity and the relation was fitted by the Hill equation, with a Hill coefficient of 3.2. These results demonstrate that it is possible to obtain recordings in the whole-cell configuration from olfactory sensory neurons isolated from the mouse and that voltage-gated currents and transduction properties are largely similar to those of amphibians.  相似文献   

13.
The intravenous olfaction (IVO) test is a unique type of clinical olfactometry and is widely used in Japan. However, it is difficult to distinguish actual olfactory disturbance from feigned disturbance because the IVO test is a psychophysical test. To resolve this problem, we investigated the possibility of an objective IVO test assisted with near infrared spectroscopy (NIRS). IVO testing was performed according to the usual protocol with thiamine propyldisulphide (alinamin) administration. The relative oxy- and deoxyhemoglobin levels of the orbitofrontal area during olfactory stimulation by IVO test were measured by NIRS. Pairs of NIRS emitters and detectors were positioned on the bilateral frontal scalp. After administration of alinamin, oxyhemoglobin levels increased, though deoxyhemoglobin levels did not change. An increase in oxyhemoglobin levels was observed bilaterally. Administration of saline did not elicit any change in the oxy- or deoxyhemoglobin levels and concentration of the administered alinamin related increasing of the oxyhemoglobin level was observed. Oxyhemoglobin remained unchanged in anosmic subjects despite administration of alinamin. The latency of oxyhemoglobin increase on each side and smelling latency showed significant correlation. Latencies of oxyhemoglobin increases between the right and left sides also showed significant correlation. Oxyhemoglobin response appears to be linked to olfactory related response. NIRS is a useful technique for the development of an objective form of IVO testing.  相似文献   

14.
John JA  Key B 《Chemical senses》2003,28(9):773-779
During development, primary olfactory axons typically grow to their topographically correct target zone without extensive remodelling. Similarly, in adults, new axons arising from the normal turnover of sensory neurons essentially project to their target without error. In the present study we have examined axon targeting in the olfactory pathway following extensive chemical ablation of the olfactory neuroepithelium in the P2-tau:LacZ line of mice. These mice express LacZ in the P2 subpopulation of primary olfactory neurons whose axons target topographically fixed glomeruli on the medial and lateral surfaces of the olfactory bulb. Intraperitoneal injections of dichlobenil selectively destroyed the sensory neuroepithelium of the nasal cavity without direct physical insult to the olfactory neuron pathway. Primary olfactory neurons regenerated and LacZ staining revealed the trajectory of the P2 axons. Rather than project solely to their topographically appropriate glomeruli, the regenerating P2 axons now terminated in numerous inappropriate glomeruli which were widely dispersed over the olfactory bulb. While these errors in targeting were refined over time, there was still considerable mis-targeting after four months of regeneration.  相似文献   

15.
In female Albino laboratory mice neural olfactory thresholdswere established by means of evoked potential measurements withpermanently implanted electrodes. The method allowed registrationof the bulbar activity up to 17 consecutive days; each day thesexual status of the animals was determined by the vaginal smears. There is a close correlation between olfactory sensitivity andestrus cycle: All individuals had their maximum olfactory acuityin proestrus; in metestrus the threshold values were up to 1million times higher. During diestrus and estrus the thresholdvalues were inbetween these extremas. This pattern was foundin the three test substances geraniol, butyric acid and butyricmethyl ester. In comparison to the olfactory thresholds in male mice, in theaverage the females had a slightly higher sensitivity in proestrus,whereas in metestrus all of them show a marked increase in theirthreshold values.  相似文献   

16.
The septal organ of Masera (SO) is a small, isolated patch of olfactory epithelium, located in the ventral part of the nasal septum. We investigated in this systematic study the postnatal development of the SO in histological sections of rats at various ages from the day of birth (P1) to P666. The SO-area increases to a maximum at P66-P105, just as the animals reach sexual maturity, and decreases thereafter, significantly however only in males, indicating a limited neurogenetic capacity for regeneration. In contrast, the main olfactory epithelium area continues to expand beyond P300. The modified respiratory epithelium ('zwischen epithelium') separating the SO and the main olfactory epithelium contains a few olfactory neurons up to age P66. Its length increases postnatally so that the SO becomes more ventral to the OE. Although the position of the SO relative to other anatomical landmarks changes with development it is consistently located just posterior to the opening of the nasopalatine duct (NPAL). Thus, a possible function of the SO is in sensing chemicals in fluids entering the mouth by licking and then delivered to the nasal cavity via the NPAL; therefore the SO may be involved in social/sexual behavior as is the vomeronasal organ (VNO). We suggest that the SO is a separate accessory olfactory organ with properties somewhat different from both OE and VNO and may exist only in species where the NPAL does not open into the VNO.  相似文献   

17.
The olfactory bulb directly projects to several diverse telencephalic structures, but, to date, few studies have investigated the physiological characteristics of most of these areas. As an initial step towards understanding the odor processing functions of these secondary olfactory structures, we recorded evoked field potentials in response to lateral olfactory tract stimulation in vivo in urethane-anesthetized Sprague-Dawley rats in the following brain structures: anterior olfactory nucleus, ventral and dorsal tenia tecta, olfactory tubercle, anterior and posterior piriform cortex, the anterior cortical nucleus of the amygdala, and lateral entorhinal cortex. Using paired-pulse stimulation with interpulse intervals of 25-1000 ms, we observed facilitation of the response to the second pulse in every structure examined, although the degree of facilitation varied among the target structures. Additionally, pulse train stimulation at three different frequencies (40, 10 and 2 Hz) produced facilitation of evoked field potentials that also varied among target structures. We discuss the potential utility of such short-term facilitation in olfactory processing.  相似文献   

18.
19.
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.  相似文献   

20.
Using a three-alternative forced-choice ascending staircase procedure, we determined olfactory detection thresholds in 20 human subjects for seven aromatic aldehydes and compared them to those of four spider monkeys tested in parallel using an operant conditioning paradigm. With all seven odorants, both species detected concentrations <1 ppm, and with several odorants single individuals of both species even discriminated concentrations <1 ppb from the solvent. No generalizable species differences in olfactory sensitivity were found despite marked differences in neuroanatomical and genetic features. The across-odorant patterns of sensitivity correlated significantly between humans and spider monkeys, and both species were more sensitive to bourgeonal than to lilial, cyclamal, canthoxal, helional, lyral, and 3-phenylpropanal. No significant correlation between presence/absence of an oxygen-containing moiety attached to the benzene ring or presence/absence of an additional alkyl group next to the functional aldehyde group, and olfactory sensitivity was found in any of the species. However, the presence of a tertiary butyl group in para position (relative to the functional aldehyde group) combined with a lack of an additional alkyl group next to the functional aldehyde group may be responsible for the finding that both species were most sensitive to bourgeonal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号