首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.  相似文献   

2.
Patterning of the early neural tube is achieved in part by the inductive signals, which arise from neuroepithelial signaling centers. The zona limitans intrathalamica (ZLI) is a neuroepithelial domain in the alar plate of the diencephalon which separates the prethalamus from the thalamus. The ZLI has recently been considered to be a possible secondary organizer, effecting its inductions via sonic hedgehog (Shh), a signaling molecule which drives morphogenetic information for the thalamus. Using experimental embryological techniques involving the generation of chimeric embryos, we show that the formation of the ZLI in the diencephalic alar plate is due to an interaction between the prechordal and epichordal plate neuroepithelia. We also provide evidence that Shh expression in the ZLI underlies the morphogenetic activity of this putative diencephalic organizer. Ectopic Shh led to the auto-induction of its own gene expression in host cells, as well as to the expression of other genes involved in diencephalic regionalization and histogenesis. Analysis of long-term surviving embryos after Shh ectopic expression demonstrated that Shh was able to induce thalamic structures and local overgrowth. Overall, these results indicate that Shh expressed in the ZLI plays an important role in diencephalic growth and in the development of the thalamus.  相似文献   

3.
The thalamus and prethalamus consist of multiple distinct nuclei and their boundary is demarcated by the zona limitans intrathalamica (ZLI). The development of the primordial thalamus and prethalamus proceed within the caudal diencephalon. Shh has been shown to be essential for diencephalic patterning and regionalization. To understand the role of Shh in the specification of distinct thalamic and prethalamic nuclei, we developed a lineage marker for diencephalic cells expressing Shh by using bacterial artificial chromosome (BAC) transgenesis. A genomic fragment containing ~210 kb of the mouse Shh locus was used to target enhanced green fluorescent protein (eGFP) in transgenic mice. This transgenic BAC reporter faithfully mimicked the pattern of endogenous Shh expression in the caudal diencephalon, including the ZLI. Fate mapping analysis at multiple developmental stages showed that descendents of Shh-expressing progenitor cells derived from ZLI contribute to a population of cells in the ventral lateral geniculate nucleus.  相似文献   

4.
Sonic hedgehog (Shh) is crucial for motoneuron development in chick and mouse. However, zebrafish embryos homozygous for a deletion of the shh locus have normal numbers of motoneurons, raising the possibility that zebrafish motoneurons may be specified differently. Unlike other vertebrates, zebrafish express three hh genes in the embryonic midline: shh, echidna hedgehog (ehh) and tiggywinkle hedgehog (twhh). Therefore, it is possible that Twhh and Ehh are sufficient for motoneuron formation in the absence of Shh. To test this hypothesis we have eliminated, or severely reduced, all three Hh signals using mutations that directly or indirectly reduce Hh signaling and antisense morpholinos. Our analysis shows that Hh signals are required for zebrafish motoneuron induction. However, each of the three zebrafish Hhs is individually dispensable for motoneuron development because the other two can compensate for its loss. Our results also suggest that Twhh and Shh are more important for motoneuron development than Ehh.  相似文献   

5.
To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.  相似文献   

6.
Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon   总被引:2,自引:0,他引:2  
The thalamic complex is the major sensory relay station in the vertebrate brain and comprises three developmental subregions: the prethalamus, the thalamus and an intervening boundary region - the zona limitans intrathalamica (ZLI). Shh signalling from the ZLI confers regional identity of the flanking subregions of the ZLI, making it an important local signalling centre for regional differentiation of the diencephalon. However, our understanding of the mechanisms responsible for positioning the ZLI along the neural axis is poor. Here we show that, before ZLI formation, both Otx1l and Otx2 (collectively referred to as Otx1l/2) are expressed in spatially restricted domains. Formation of both the ZLI and the Irx1b-positive thalamus require Otx1l/2; embryos impaired in Otx1l/2 function fail to form these areas, and, instead, the adjacent pretectum and, to a lesser extent, the prethalamus expand into the mis-specified area. Conditional expression of Otx2 in these morphant embryos cell-autonomously rescues the formation of the ZLI at its correct location. Furthermore, absence of thalamic Irx1b expression, in the presence of normal Otx1l/2 function, leads to a substantial caudal broadening of the ZLI by transformation of thalamic precursors. We therefore propose that the ZLI is induced within the competence area established by Otx1l/2, and is posteriorly restricted by Irx1b.  相似文献   

7.
Fgf8 controls regional identity in the developing thalamus   总被引:1,自引:0,他引:1  
The vertebrate thalamus contains multiple sensory nuclei and serves as a relay station to receive sensory information and project to corresponding cortical areas. During development, the progenitor region of the diencephalon is divided into three parts, p1, p2 (presumptive thalamus) and p3, along its longitudinal axis. Besides the local expression of signaling molecules such as sonic hedgehog (Shh), Wnt proteins and Fgf8, the patterning mechanisms of the thalamic nuclei are largely unknown. Using mouse in utero electroporation to overexpress or inhibit endogenous Fgf8 at the diencephalic p2/p3 border, we revealed that it affected gene expression only in the p2 region without altering overall diencephalic size or the expression of other signaling molecules. We demonstrated that two distinctive populations in p2, which can be distinguished by Ngn2 and Mash1 in early embryonic diencephalon, are controlled by Fgf8 activity in complementary manner. Furthermore, we found that FGF activity shifts thalamic sensory nuclei on the A/P axis in postnatal brain. Moreover, gene expression analysis demonstrated that FGF signaling shifts prethalamic nuclei in complementary manner to the thalamic shift. These findings suggest conserved roles of FGF signaling in patterning along the A/P axis in CNS, and reveal mechanisms of nucleogenesis in the developing thalamus.  相似文献   

8.
Endocardial cells form the inner endothelial layer of the heart tube, surrounded by the myocardium. Signaling pathways that regulate endocardial cell specification and differentiation are largely unknown and the origin of endocardial progenitors is still being debated. To study pathways that regulate endocardial differentiation in a zebrafish model system, we isolated zebrafish NFATc1 homolog which is expressed in endocardial but not vascular endothelial cells. We further demonstrate that Hedgehog (Hh) but not VegfA or Notch signaling is required for early endocardial morphogenesis. Pharmacological inhibition of Hh signaling with cyclopamine treatment resulted in nearly complete loss of the endocardial marker expression. Simultaneous knockdown of the two zebrafish sonic hedgehog homologs, shh and twhh or Hh co-receptor smoothened (smo) resulted in similar defects in endocardial morphogenesis. Inhibition of Hh signaling resulted in the loss of fibronectin (fn1) expression in the presumptive endocardial progenitors as early as the 10-somite stage which suggests that Hh signaling is required for the earliest stages of endocardial specification. We further show that the endoderm plays a critical role in migration but not specification or differentiation of the endocardial progenitors while notochord-derived Hh is a likely source for the specification and differentiation signal. Mosaic analysis using cell transplantation shows that Smo function is required cell-autonomously within endocardial progenitor cells. Our results argue that Hh provides a critical signal to induce the specification and differentiation of endocardial progenitors.  相似文献   

9.
The diencephalon is a central area of the vertebrate developing brain, where the thalamic nuclear complex, the pretectum and the anterior tegmental structures are generated. It has been subdivided into prosomeres, which are transversal domains defined by morphological and molecular criteria. The zona limitans intrathalamica is a central boundary in the diencephalon that separates the posterior diencephalon (prosomeres 1 and 2), from the anterior diencephalon (prosomere 3). This intrathalamic limit appears early on in neural tube development, and the molecular pattern that it reveals suggests an important role in the diencephalic histogenesis. We hereby present a fate map of the presumptive territories in the diencephalon of a chick embryo at the 10-11 somite stages (HH9-10), by homotopic and isochronic quail-chick grafts. The anatomical interpretation of chimeric brains was aided by correlative whole-mount in situ hybridization with RNA probes for chicken genes expressed in specific diencephalic territories. The resulting fate map describes the distribution of the presumptive diencephalic prosomeres in the neural tube, and demonstrates their topologically conserved relationships throughout the neural development. Moreover, we show that the presumptive epithelium of ZLI can be localized at early developmental stages in the diencephalic alar plate at the anterior limit of the Wnt8b gene expression domain.  相似文献   

10.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

11.
The secreted molecule Sonic hedgehog (Shh) is crucial for floor plate and ventral brain development in amniote embryos. In zebrafish, mutations in cyclops (cyc), a gene that encodes a distinct signal related to the TGF(beta) family member Nodal, result in neural tube defects similar to those of shh null mice. cyc mutant embryos display cyclopia and lack floor plate and ventral brain regions, suggesting a role for Cyc in specification of these structures. cyc mutants express shh in the notochord but lack expression of shh in the ventral brain. Here we show that Cyc signalling can act directly on shh expression in neural tissue. Modulation of the Cyc signalling pathway by constitutive activation or inhibition of Smad2 leads to altered shh expression in zebrafish embryos. Ectopic activation of the shh promoter occurs in response to expression of Cyc signal transducers in the chick neural tube. Furthermore an enhancer of the shh gene, which controls ventral neural tube expression, is responsive to Cyc signal transducers. Our data imply that the Nodal related signal Cyc induces shh expression in the ventral neural tube. Based on the differential responsiveness of shh and other neural tube specific genes to Hedgehog and Cyc signalling, a two-step model for the establishment of the ventral midline of the CNS is proposed.  相似文献   

12.
The correlation between dorsal and ventral segmental units in diplopod myriapods is complex and disputed. Recent results with engrailed (en), hedgehog (hh), wingless (wg), and cubitus-interruptus (ci) have shown that the dorsal segments are patterned differently from the ventral segments. Ventrally, gene expression is compatible with the classical autoregulatory loop known from Drosophila to specify the parasegment boundary. In the dorsal segments, however, this Wg/Hh autoregulatory loop cannot be present because the observed gene expression patterns argue against the involvement of Wg signalling. In this paper, we present further evidence against an involvement of Wg signalling in dorsal segmentation and propose a hypothesis about how dorsal segmental boundaries may be controlled in a wg-independent way. We find that (1) the Notum gene, a modulator of the Wg gradient in Drosophila, is not expressed in the dorsal segments. (2) The H15/midline gene, a repressor of Wg action in Drosophila, is not expressed in the dorsal segments, except for future heart tissue. (3) The patched (ptc) gene, which encodes a Hh receptor, is strongly expressed in the dorsal segments, which is incompatible with Wg-Hh autoregulation. The available data suggest that anterior-posterior (AP) boundary formation in dorsal segments could instead rely on Dpp signalling rather than Wg signalling. We present a hypothesis that relies on Hh-mediated activation of Dpp signalling and optomotor-blind (omb) expression to establish the dorsal AP boundary (the future tergite boundary). The proposed mechanism is similar to the mechanism used to establish the AP boundary in Drosophila wings and ventral pleura.  相似文献   

13.
The vertebrate neural plate contains distinct domains of gene expression, prefiguring the future brain areas. In this study, we draw an extended expression map of the rostral neural plate that reveals discrete domains inside the presumptive posterior forebrain. We show, by fate mapping, that these well-defined cell populations will develop into specific diencephalic regions. To address whether these early subterritories are already committed to restricted identities, we began to analyse the consequences of ablation and transplantation of these specific cell populations. We found that precursors of the prethalamus are already specified and irreplaceable at late gastrula stage, because ablation of these cells results in loss of prethalamic markers. Moreover, when transplanted into the ectopic environment of the presumptive hindbrain, these cells still pursue their prethalamic differentiation program. Finally, transplantation of these precursors, in the rostral-most neural epithelium, induces changes in cell identity in the surrounding host forebrain. This cell–non-autonomous property led us to propose that these committed prethalamic precursors may play an instructive role in the regionalization of the developing diencephalon.  相似文献   

14.
Hedgehog (Hh) signaling plays multiple roles in the development of the anterior craniofacial skeleton. We show that the earliest function of Hh is indirect, regulating development of the stomodeum, or oral ectoderm. A subset of post-migratory neural crest cells, that gives rise to the cartilages of the anterior neurocranium and the pterygoid process of the palatoquadrate in the upper jaw, condenses upon the upper or roof layer of the stomodeal ectoderm in the first pharyngeal arch. We observe that in mutants for the Hh co-receptor smoothened (smo) the condensation of this specific subset of crest cells fails, and expression of several genes is lost in the stomodeal ectoderm. Genetic mosaic analyses with smo mutants show that for the crest cells to condense the crucial target tissue receiving the Hh signal is the stomodeum, not the crest. Blocking signaling with cyclopamine reveals that the crucial stage, for both crest condensation and stomodeal marker expression, is at the end of gastrulation--some eight to ten hours before crest cells migrate to associate with the stomodeum. Two Hh genes, shh and twhh, are expressed in midline tissue at this stage, and we show using mosaics that for condensation and skeletogenesis only the ventral brain primordium, and not the prechordal plate, is an important Hh source. Thus, we propose that Hh signaling from the brain primordium is required for proper specification of the stomodeum and the stomodeum, in turn, promotes condensation of a subset of neural crest cells that will form the anterior neurocranial and upper jaw cartilage.  相似文献   

15.
Hedgehog (Hh) signaling is proposed to have different roles on differentiation of hypaxial myoblasts of amniotes. Within the somitic environment, Hh signals restrict hypaxial development and promote epaxial muscle formation. On the other hand, in the limb bud, Hh signaling represses hypaxial myoblast differentiation. This poses the question of whether differences in response to Hh signaling are due to variations in local environment or are intrinsic differences between pre- and post-migratory hypaxial myoblasts. We have approached this question by examining the role of Hh signaling on myoblast development in Xenopus laevis, which, due to its unique mode of hypaxial muscle development, allows us to examine myoblast development in vivo in the absence of the limb environment. Cyclopamine and sonic hedgehog (shh) mRNA overexpression were used to inhibit or activate the Hh pathway, respectively. We find that hypaxial myoblasts respond similarly to Hh manipulations regardless of their location, and that this response is the same for epaxial myoblasts. Overexpression of shh mRNA causes a premature differentiation of the dermomyotome, subsequently inhibiting all further growth of the epaxial and hypaxial myotome. Cyclopamine treatment has the opposite effect, causing an increase in dermomyotome and a shift in myoblast fate from epaxial to hypaxial, eventually leading to an excess of hypaxial body wall muscle. Cyclopamine treatment before stage 20 can rescue the effects of shh overexpression, indicating that early Hh signaling plays an essential role in maintaining the balance between epaxial and hypaxial muscle mass. After stage 20, the premature differentiation of the dermomyotome caused by shh overexpression cannot be rescued by cyclopamine, and no further embryonic muscle growth occurs.  相似文献   

16.
sonic hedgehog (shh) is expressed in anterior endoderm, where it is required to repress pancreas gene expression and to pattern the endoderm, but the pathway controlling endodermal shh expression is unclear. We find that expression of meis3, a TALE class homeodomain gene, coincides with shh expression in the endoderm of zebrafish embryos. Using a dominant negative construct or anti-sense morpholino oligos (MOs) to disrupt meis3 function, we observe ectopic insulin expression in anterior endoderm. This phenotype is also observed when meis3 MOs are targeted to the endoderm, suggesting that meis3 acts within the endoderm to restrict insulin expression. We also find that meis3 is required for endodermal shh expression, indicating that meis3 acts upstream of shh to restrict insulin expression. Loss of pbx4, a TALE gene encoding a Meis cofactor, produces the same phenotype as loss of meis3, consistent with Meis3 acting in a complex with Pbx4 as reported in other systems. Lastly, we observe a progressive anterior displacement of endoderm-derived organs upon disruption of meis3 or pbx4, apparently as a result of underdevelopment of the pharyngeal region. Our data indicate that meis3 and pbx4 regulate shh expression in anterior endoderm, thereby influencing patterning and growth of the foregut.  相似文献   

17.
18.
19.
20.
The zona limitans intrathalamica (ZLI) is located at the border between the prospective ventral thalamus and dorsal thalamus, and functions as a diencephalic signaling center. Little is known about the mechanism controlling ZLI formation. Using a combination of fate-mapping studies and in vitro assays, I show that the differentiation of the ZLI from progenitor cells in the alar plate is initiated by a Shh-dependent signal from the basal plate. The subsequent dorsal progression of ZLI differentiation requires ongoing Shh signaling, and is constrained by inhibitory factors derived from the dorsal diencephalon. These studies demonstrate that self-organizing signals from the basal plate regulate the formation of a potential patterning center in the ZLI in an orthogonal orientation in the alar plate, and thus create the potential for coordinated thalamic patterning in two dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号