首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   

2.
A spectrophotometric method for determination of color development of glycocompounds subjected to PAS reaction was investigated with various carbohydrate compounds and related chemicals. The conditions of the oxidation with periodic acid was found to influence the amount of the colored Schiff dye produced. Mono- and di-saccharides (mannose, glucose and maltose) were PAS-negative. Glycogen was more reactive than dextran. When glycogen was hydrolyzed by amylase the intensity of the PAS product dropped until a certain limit probably reflecting the limit dextrin. The presence of proteins (albumin) or electrolytes (NaCl) did not influence the PAS reaction. Many non-ionic detergents commonly used in membrane biology such as alkyl glycosides and gluco-methyl alkanamides were strongly PAS-positive and so was the anionic detergent SDS while the zwitterionic detergents tested, such as CHAPS and CHAPSO, were PAS-negative. The color development of the spectrophotometric PAS reaction showed linearity with the concentration of a simple glycoprotein solution (peroxidase) and a complex solution (bovine serum). By the PAS reaction it was also possible to measure the content of soluble and membrane bound carbohydrate compounds in a pellet of liver cell membranes. We find that the PAS reaction is sensitive and reliable for quantitative estimations of complex carbohydrates as well as soluble and membrane-bound carbohydrate compounds. The latter should be treated with PAS-unreactive zwitterionic detergents.  相似文献   

3.
Total and selective solubilization of human, bovine and porcine spermatozoa were achieved. These spermatozoa are ordinarily resistant to alkali or detergent addition. However, brief exposure to dithiothreitol rendered whole sperm cells susceptible to solubilization with alkali or the anionic detergent sodium dodecyl sulfate. Selective solubilization of spermatozoa tails was produced after exposure to dithiothreitol by treatment with the cationic detergent cetyltrimethyl-ammonium bromide, while selective solubilization of sperm heads was obtained, after such exposure, by treatment with the non-ionic detergent brij-35. SDS treatment permitted the isolation of a highly polymerized DNA.  相似文献   

4.
The action of ATP/ADP-antiporter inhibitors upon the uncoupling effect of palmitate, detergents and 'classical' uncouplers has been studied. The uncoupling effect was estimated by stimulation of succinate oxidation and of H+ permeability of rat liver mitochondria in the presence of oligomycin. It is shown that carboxyatractylate (CAtr) and pyridoxal 5-phosphate (PLP) suppress the uncoupling induced by palmitate and the anionic detergents SDS and cholate, but do not affect that induced by the cationic detergents CTAB, by the non-ionic detergent Triton X-100, as well as by the 'classical' uncouplers FCCP and DNP. The results are discussed in terms of a concept assuming that the ATP/ADP-antiporter facilitates the electrophoretic export of hydrophobic anions from mitochondria.  相似文献   

5.
The interaction between n-octyl-beta-D-glucopyranoside (octyl glucoside) and bovine liver glutamate dehydrogenase (GDH) was studied using techniques including equilibrium dialysis, UV-spectrophotometry, circular dichroism (CD), fluorescence energy transfer and extrinsic spectrofluorometry in 50 mM sodium phosphate buffer solution (pH 7.6). The equilibrium dialysis experiment showed a higher binding of octyl glucoside to GDH that induces up to 80% enzyme inhibition in 20 mM octyl glucoside solution. The CD study indicated that GDH retains its secondary structure in the presence of octyl glucoside, but loses a degree of its tertiary structure by acquiring a more extended tertiary structure. Measurement of the binding of a hydrophobic fluorescent probe, 1-anilino-naphthalene-8-sulfonate (ANS), to GDH revealed that the binding of ANS to GDH is increased in the presence of octyl glucoside, a finding that may be interpreted in terms of the increment of surface hydrophobic patch(es) of GDH because of its binding to octyl glucoside. Fluorescence energy transfer studies also showed more binding of the reduced coenzyme (NADH) to GDH and the Lineweaver-Burk plots (with respect to NADH) indicate the existence of substrate inhibition in the presence of octyl glucoside. These observations are aimed at explaining the formation of the molten globule-like structure of GDH, which is induced by a non-ionic detergent such as octyl glucoside.  相似文献   

6.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

7.
To determine an optimal method for extracting immunoreactive proteins from filarial parasites, we have subjected Brugia malayi adult worms to a variety of solubilization regimens and compared the results. The parasites were extracted in one of seven detergents (including anionic, cationic, nonionic, and zwitterionic compounds) under varying conditions of pH, detergent concentrations, and incubation time. The individual antigen preparations were then compared both by one-dimensional SDS-PAGE and by immunoblotting analysis using a serum pool from individuals resident in an area endemic for lymphatic filariasis. The cationic detergent cetyltrimethylammonium bromide (CTAB) at 1.0% concentration, pH 7.2, consistently solubilized more proteins immunoreactive with the sera tested. Additionally, CTAB never failed to solubilize immunoreactive proteins solubilized by those other detergents or combinations of detergents studied.  相似文献   

8.
Rat brain benzodiazepine receptors have been solubilized by means of the zwitterionic detergent CHAPS under conditions in which the GABA stimulation of [3H]flunitrazepam binding to the benzodiazepine receptors is maintained intact. This stimulation is partially or totally abolished when using other conventional detergents.  相似文献   

9.
Pertussis toxin catalyzed ADP-ribosylation of the guanyl nucleotide binding protein transducin was stimulated by adenine nucleotide and either phospholipids or detergents. To determine the sites of action of these agents, their effects were examined on the transducin-independent NAD glycohydrolase activity. Toxin-catalyzed NAD hydrolysis was increased synergistically by ATP and detergents or phospholipids; the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) was more effective than the nonionic detergent Triton X-100 greater than lysophosphatidylcholine greater than phosphatidylcholine. The A0.5 for ATP in the presence of CHAPS was 2.6 microM; significantly higher concentrations of ATP were required for maximal activation in the presence of cholate or lysophosphatidylcholine. In CHAPS, NAD hydrolysis was enhanced by ATP greater than ADP greater than AMP greater than adenosine; ATP was more effective than MgATP or the nonhydrolyzable analogue adenyl-5'-yl imidodiphosphate. GTP and guanyl-5'-yl imidodiphosphate were less active than the corresponding adenine nucleotides. Activity in the presence of CHAPS and ATP was almost completely dependent on dithiothreitol; the A0.5 for dithiothreitol was significantly decreased by CHAPS alone and, to a greater extent, by CHAPS and ATP. To determine the site of action of ATP, CHAPS, and dithiothreitol, the enzymatic (S1) and binding components (B oligomer) were resolved by chromatography. The purified S1 subunit catalyzed the dithiothreitol-dependent hydrolysis of NAD; activity was enhanced by CHAPS but not ATP. The studies are consistent with the conclusion that adenine nucleotides, dithiothreitol, and CHAPS act on the toxin itself rather than on the substrate; adenine nucleotides appear to be involved in the activation of toxin but not the isolated catalytic unit.  相似文献   

10.
3,3',5-Tri-iodo-L-thyronine (L-T3) binding sites from rat erythrocyte membranes were solubilized in an active form by using the zwitterionic detergent CHAPS or the anionic detergent lauroylsarcosine. The binding protein was successively purified by Sephadex G-200 and affinity chromatography. The purified material retained its binding activity and exhibited high affinity and specificity compared with those displayed in the original membrane. Yield was about 10% of the starting activity. The specific binding activity was enriched by approx. 100-fold, which represents a purity of only 0.1%. Analysis of the purified preparation on SDS/PAGE showed two major protein bands (Mr 64,000 and Mr 50,000), but these could not represent the binding protein since the purity obtained was low. However, affinity-labelling experiments with N-bromoacetyl-L-[125I]T3 in intact membranes showed that two proteins (also with Mr values of 64,000 and 50,000) bound the hormone specifically, suggesting a co-migration of hormone receptors and contaminants on gel electrophoresis.  相似文献   

11.
Mogensen JE  Sehgal P  Otzen DE 《Biochemistry》2005,44(5):1719-1730
Lipases catalyze the hydrolysis of triglycerides and are activated at the water-lipid interface. Thus, their interaction with amphiphiles such as detergents is relevant for an understanding of their enzymatic mechanism. In this study, we have characterized the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and thermal stability of Thermomyces lanuginosus lipase (TlL). For all detergents, low concentrations enhance the activity of TlL toward p-nitrophenyl butyrate by more than an order of magnitude; at higher detergent concentrations, the activity declines, leveling off close to the value measured in the absence of detergent. Surprisingly, these phenomena mainly involve monomeric detergent, as activation and inhibition occur well below the cmc for the nonionic and zwitterionic detergents. For anionic and cationic detergents, activation straddles the monomer-micelle transition. The data can be fitted to a three state interaction model, comprising free TlL in the absence of detergent, an activated complex with TlL at low detergent concentrations, and an enzyme-inhibiting complex at higher concentrations. For detergents with the same headgroup, there is an excellent correspondence between carbon chain length and ability to activate and inhibit TlL. However, the headgroup and number of chains also modulate these effects, dividing the detergents overall into three broad groups with rising activation and inhibition ability, namely, anionic and cationic detergents, nonionic and single-chain zwitterionic detergents, and double-chain zwitterionic detergents. As expected, only anionic and cationic detergents lead to a significant decrease in lipase thermal stability. Since nonionic detergents activate TlL without destabilizing the protein, activation/inhibition and destabilization must be independent processes. We conclude that lipase-detergent interactions occur at many independent levels and are governed by a combination of general and structurally specific interactions. Furthermore, activation of TlL by detergents apparently does not involve the classical interfacial activation phenomenon as monomeric detergent molecules are in most cases responsible for the observed increase in activity.  相似文献   

12.
Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.  相似文献   

13.
The anionic detergents sodium dodecyl sulfate (SDS) and Alipal CO-433 and the non-ionic detergent Trition X-100 at concentrations of 0.02–0.10% cause a more rapid solubilization of phospholipid than proteins in isolated rat liver plasma membranes. All three detergents cause an increase in membrane turbidity at low detergent concentration (0.01–0.04%) but then decrease the turbidity at higher detergent concentration (0.04–0.10%). Each detergent gives a characteristic turbidity-detergent concentration profile which is pH dependent.The activities of the membrane-bound enzymes Mg2+ ATPase, 5′-nucleotidase and acid and aklaline phosphatase were influenced by each detergent to a different extent. Each enzyme gave a characteristic activity-detergent concentration profile. Mg2+ ATPase was inhibited by all detergents. 5′-Nucleotidase was stimulated by Triton and Alipal but inhibited by SDS. Alkaline phosphatase was stimulated by Alipal and SDS and not influenced by Triton. Acid phosphatase was stimulated by Triton and inhibited by Alipal and SDS. 56% of the total membrane-bound alkaline phosphatase and 23% of the total membrane-bound 5′-nucleotidase was solubilized in an active form by 0.06% and 0.05% SDS respectively.  相似文献   

14.
We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd?=?40?μM) with a lower affinity than SDS (Kd?=?2?μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.  相似文献   

15.
In order to maximize the myocardial proteome observed by two-dimensional gel electrophoresis (2-DE), the effect of (1) either an ionic or different zwitterionic detergents during tissue homogenization and (2) altering the "standard" detergent for isoelectric focusing (3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS)) to either the zwitterionic detergent amidosulfobetaine-14 (ASB-14) or N-decyl-N-N'-dimethyl-3-ammonio-1-propane sulfonate (SB3-10) was investigated. Sodium dodecyl sulfate was shown to be a superior detergent for extraction of proteins during homogenization of cardiac tissue compared to the detergents ASB-14, SB3-10 or CHAPS. Additionally, both ASB-14 and SB3-10 exhibited better extraction than CHAPS for distinct regions of two-dimensional gels. In most cases, the best combination of homogenization and focusing conditions did not involve the use of the same detergent. Specifically, it was found that the ability to mix homogenization and focusing conditions can allow one to obtain an optimum balance between the resolution and number of protein spots obtained in 2-DE analysis of cardiac tissue. An excellent initial combination of buffers to utilize for the general examination of cardiac proteins was determined to be initial homogenization in a buffer containing ASB-14 followed by focusing in a buffer containing CHAPS.  相似文献   

16.
The multidrug resistance protein (ABCC1 or MRP1) causes resistance to multiple drugs through reduced drug accumulation. We have previously demonstrated direct interaction between MRP1 and unmodified drugs using photoreactive drug analogues. In this study, we describe the use of [125I]iodoaryl azido-rhodamine123 (IAARh123)-a photoactive drug analogue of rhodamine 123, to study the effects of mild detergents and denaturing agents on MRP1-drug binding in membrane vesicles prepared from HeLa cells transfected with the MRP1 cDNA. Our results show that the zwitterionic detergent CHAPS and a nonionic detergent Brij35 inhibited the photolabeling of MRP1 with IAARh123. Sodium deoxycholate (SDC) and octyl-beta-glucoside (OG), structurally similar to CHAPS and Brij35 and disrupting the lipid bilayer, showed a modest increase of MRP1 photolabeling with IAARh123. Proteolytic digestion of IAARh123 photolabeled MRP1 labeled in the presence or absence of various detergents (CHAPS, SDC, or OG) revealed identical photolabeled peptides. Consistent with the drug-binding results, non-toxic concentrations of CHAPS and Brij35 reversed vincristine and etoposide (VP16) toxicity in MRP1 expressing cells. Taken together, the results of this study show that MRP1-drug interaction can occur outside the lipid bilayer environment. However, this interaction is inhibited with certain mild detergents.  相似文献   

17.
The present work investigates the possibility of a rapid estimation of critical micelle concentration (cmc) of surfactants by means of soluble fluorescent probes. The effect of nonionic or differently charged surfactants on the fluorescent properties of the anionic 8-anilino-1-naphtalenesulfonic acid magnesium salt (ANS) or cationic rhodamine 6G has been investigated. The possibility of cmc evaluation depends on the appropriate selection of the dye-detergent couple. ANS has to be used with anionic surfactants; on the other hand, rhodamine 6G has to be used with cationic detergents. Both ANS and rhodamine 6G have been proved to be effective with either zwitterionic or nonionic surfactants. Plots of ANS fluorescence increase or rhodamine 6G decrease vs surfactant concentration give two straight lines whose intersection indicates the cmc of the detergent. Under all these conditions the fluorescent probe does not interfere with the micellization process. Excitation of the fluorescent probes at the isosbestic point does not affect the evaluation of the cmc of the detergent. The method applies for linear or steroid surfactants and is independent of the cmc value within a wide range of concentrations.  相似文献   

18.
The effect of surface charge on the porcine pancreatic phospholipase A2 catalyzed hydrolysis of organized substrates was examined through initial rate enzyme kinetic measurements. Two long-chain phospholipid substrates, phosphatidylglycerol (PG) and phosphatidylcholine (PC), were solubilized in seven detergents differing in polar head-group charge. The neutral or zwitterionic detergents selected were Triton X-100, Zwittergent 314, lauryl maltoside, hexadecylphosphocholine (C16PN), and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The negatively and positively charged detergents used were cholate and CTAB, respectively. In general, the negatively charged phospholipid PG was hydrolyzed much more rapidly than the neutral (zwitterionic) phospholipid PC. The rate of hydrolysis of PG was rapid when solubilized in all the neutral detergents and in cholate but was essentially zero in the positively charged CTAB. Conversely, hydrolysis of PC was negligible when solubilized in neutral detergents, except C16PN, and was maximal in the negatively charged detergent, cholate. The rate of hydrolysis of PC solubilized in a neutral detergent became significant only when a negative surface charge was introduced by addition of SDS. Taken together, these kinetic measurements indicate that the surface charge on the lipid aggregates is an important factor in the rate of hydrolysis of phospholipid substrates and the highest activity is observed when the net surface charge is negative. Fluorescence and electron spin resonance (ESR) spectroscopic data provide additional support for this conclusion. The fluorescence emission spectrum of the single tryptophan of phospholipase A2 is a sensitive monitor of interfacial complex formation and shows that interaction of the protein with detergent micelles is strongly dependent on the presence of a negatively charged amphiphile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
EhCP-B9, a cysteine protease (CP) involved in Entamoeba histolytica virulence, is a potential target for disease diagnosis and drug design. After purification from inclusion bodies produced in Escherichia coli, the recombinant EhCP-B9 precursor (ppEhCP-B9) can be refolded using detergents as artificial chaperones. However, the conformational changes that occur during ppEhCP-B9 refolding remain unknown. Here, we comprehensively describe conformational changes of ppEhCP-B9 that are induced by various chemical detergents acting as chaperones, including non-ionic, zwitterionic, cationic and anionic surfactants. We monitored the effect of detergent concentration and incubation time on the secondary and tertiary structures of ppEhCP-B9 using fluorescence and circular dichroism (CD) spectroscopy. In the presence of non-ionic and zwitterionic detergents, ppEhCP-B9 adopted a β-enriched structure (ppEhCP-B9β1) without proteolytic activity at all detergent concentrations and incubation times evaluated. ppEhCP-B9 also exhibits a β-rich structure in low concentrations of ionic detergents, but at concentrations above the critical micelle concentration (CMC), the protein acquires an α + β structure, similar to that of papain but without proteolytic activity (ppEhCP-B9α + β1). Interestingly, only within a narrow range of experimental conditions in which SDS concentrations were below the CMC, ppEhCP-B9 refolded into a β-sheet rich structure (ppEhCP-B9β2) that slowly transforms into a different type of α + β conformation that exhibited proteolytic activity (ppEhCP-B9α + β2) suggesting that enzymatic activity is gained as slow transformation occurs.  相似文献   

20.
To examine the activities and identity of enzymes associated with organelles such as microsomes and mitochondria, proteins from mouse liver were extracted using the non-ionic detergents Nonidet P-40 (NP-40), polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene isooctylphenyl ester (Triton X), n-octyl beta-D-glucoside (octyl glycoside) or anionic detergent sodium dodecylsulfate (SDS) after the removal of cytosolic proteins. The proteins extracted by detergents were separated by non-denaturing two-dimensional electrophoresis (2-DE). The activities of esterase and aldehyde dehydrogenase were retained by non-denaturing 2-DE after treatment with each non-ionic detergent, but the activities were reduced or lost when the proteins were extracted with more than 0.5% SDS. For proteomic analysis of the organelle-associated proteins in mouse liver, proteins were separated by non-denaturing 2-DE and were identified using electrospray ionization tandem mass spectrometry (ESI-MS/MS) after the proteins were solubilized by octyl glycoside, NP-40 and 0.1% SDS. Several organelle-associated proteins such as carboxylesterase, aldehyde dehydrogenase, glucose regulated protein and HSP60 were identified. These results indicate that the activities and identity of detergent-soluble enzymes can be examined by this non-denaturing 2-DE and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号