首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhodopseudomonas faecalis strain RLD-53 was isolated from freshwater pond sludge and was demonstrated it could produce hydrogen. This study to investigate their ability of hydrogen production under some conditions in batch culture experiments. At pH 7.0, temperature 35 degrees C and light intensity of 4000 lux, the H(2) yield was 2.64 mol-H(2)/mol-acetate, 2.34 mol-H(2)/mol-propionate, 1.75 mol-H(2)/mol-lactate and 3.55 mol-H(2)/mol-malate, respectively. The maximal H(2) production rate of 32.62 ml-H(2)/l/h and H(2) yield of 2.84 mol-H(2)/mol-acetate were achieved when beef extract was used as nitrogen source. Light intensity is the most important factor for H(2) production, H(2) production yield and rate decreased with increasing light intensity and reached highest under light intensity of 3000-5000 lux. Result indicated the strain RLD-53 was a high efficient bacteria for hydrogen production.  相似文献   

2.
The pH, temperature and inoculum ratio for the production of β‐galactosidase by Kluyveromyces marxianus CDB 002 were optimized using sugar‐cane molasses (100 g/l) in a lactose‐free medium. The temperature optimum was evaluated in the range from 28–37 °C. Lactase production was initiated after substrate consumption indicating a reversible enzyme inhibition or catabolic repression. The specific enzyme activity after 45 h was between 456.3 U/g cell mass (37 °C) and 733.3 U/g (34 °C), whereas the highest volumetric activity was obtained at 30 °C: 21.8 U/ml. This is generally consistent with results from other authors that used whey as a carbon source. Ethanol as a by‐product reached its maximum concentration after 10–14 h (31.1–40.5 g/l), but was completely consumed afterwards. A pH of 5.5 without further control gave the best production rate for lactase (484.4 U/l × h). In this process, the pH was stable during cell growth at 5.5 and then went up to pH 7.2 after 45 h. At a fixed pH of 5.5 or 6.5, the production rates achieved 313.3 U/l × h and 233.3 U/ l × h, respectively. These results differed from those of other authors, who suggested a fixed pH at 7.0 using whey as a carbon source. There were no significant differences between inoculum ratios of 1% [v/v] and 10% [v/v] so that 1% is the preferable ratio as it is cheaper. Yeast extract (10 g/l) and peptone (20 g/l) were used as the vitamin and nitrogen source, respectively, for the studies of temperature and pH. These were substituted by corn steep liquor (100 g/l) for inoculum ratio experiments. Production of lactase using sugar cane molasses in a lactose‐free medium gave better enzyme productivity rates than obtained by other authors using whey. The optimum conditions for β‐galactosidase synthesis were a temperature of 30–34 °C and an inoculum ratio of 1% [v/v], an initial pH of 5.5 without any further control or a control of 5.5 during cell growth. Then the pH was raised up to 7.  相似文献   

3.
A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20–30°C), agitation rate (100–300 rpm), initial pH (5.0–7.0), inoculum concentration (5–15%), and glucose concentration (30–70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (25–2), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (22) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20°C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.  相似文献   

4.
碱性木聚糖酶在碱性条件下催化水解木聚糖,广泛应用于造纸、纺织等领域.着重对短小芽胞杆菌M-11产碱性木聚糖酶的发酵条件进行初步的探索.研究了菌株的生长曲线、确定最佳接种龄为16 h、最佳接种量为1%;确定最适碳源浓度为7%、最适单一氮源为氯化铵、其浓度为1.0%、最适无机盐为氯化铁、其浓度为3 mmol/L;在此基础之上进行6因素3水平的正交试验,确定最适产酶培养基组成:麸皮5%,接种量3%,氯化铵1.2%,氯化铁3.5 mmol/L,硫酸镁0.03%,氯化钠5 mmol/L,磷酸氢二钾0.4%;最适培养条件:接种龄16 h,初始pH 8.0,温度37℃,300 mL摇瓶装液量50 mL,摇床转速220 r/min,发酵周期48 h.通过对发酵条件的优化使发酵液酶活达613 IU/mL.无机氮源为其最适氮源,因此短小芽胞杆菌M-11在碱性木聚糖酶的产品开发上优于短小芽胞杆菌M -26.  相似文献   

5.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

6.
以羟基乙腈为唯一氮源, 从土壤中筛选到一株腈水解酶产生菌CCZU-12, 经形态观察生理生化实验和16S rDNA序列分析, 鉴定该菌为假单胞菌属(Pseudomonas sp.)。对菌株CCZU-12产腈水解酶的培养条件及催化反应条件进行优化, 最适产酶培养条件为: 碳源为10 g/L乙酸钠, 氮源为5 g/L酵母粉, 金属离子为1.0 mmol/L Mg2+, 培养温度30 °C, pH值7.0, 接种量4%, 装液量50 mL/250 mL; 最适催化反应温度35 °C, pH值7.0, 反应120 h, 羟基乙腈转化率达到98.9%。  相似文献   

7.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

8.
Dark fermentative hydrogen production from glucose by a thermophilic culture (33HL), enriched from an Icelandic hot spring sediment sample, was studied in two continuous-flow, completely stirred tank reactors (CSTR1, CSTR2) and in one semi-continuous, anaerobic sequencing batch reactor (ASBR) at 58 degrees C. The 33HL produced H2 yield (HY) of up to 3.2 mol-H2/mol-glucose along with acetate in batch assay. In the CSTR1 with 33HL inoculum, H2 production was unstable. In the ASBR, maintained with 33HL, the H2 production enhanced after the addition of 6 mg/L of FeSO4 x H2O resulting in HY up to 2.51 mol-H2/mol-glucose (H2 production rate (HPR) of 7.85 mmol/h/L). The H2 production increase was associated with an increase in butyrate production. In the CSTR2, with ASBR inoculum and FeSO4 supplementation, stable, high-rate H2 production was obtained with HPR up to 45.8 mmol/h/L (1.1 L/h/L) and HY of 1.54 mol-H2/mol-glucose. The 33HL batch enrichment was dominated by bacterial strains closely affiliated with Thermobrachium celere (99.8-100%). T. celere affiliated strains, however, did not thrive in the three open system bioreactors. Instead, Thermoanaerobacterium aotearoense (98.5-99.6%) affiliated strains, producing H2 along with butyrate and acetate, dominated the reactor cultures. This culture had higher H2 production efficiency (HY and specific HPR) than reported for mesophilic mixed cultures. Further, the thermophilic culture readily formed granules in CSTR and ASBR systems. In summary, the thermophilic culture as characterized by high H2 production efficiency and ready granulation is considered very promising for H2 fermentation from carbohydrates.  相似文献   

9.
AIMS: From a survey of submerged culture of edible mushrooms, a high pigment-producing fungus Paecilomyces sinclairii was selected and its optimal culture conditions investigated. METHODS AND RESULTS: The optimal culture conditions for pigment production were as follows: inoculum age, 3 d; temperature, 25 degrees C; initial pH, 6.0; carbon source, 1.5% (w/v) soluble starch; nitrogen source, 1.5% (w/v) meat peptone. Although addition of 10 mmol l(-1) CaCl2 to the culture medium slightly increased pigment production, most of the bio-elements examined had no notable or detrimental effect on pigment production. CONCLUSIONS: Under the optimal conditions obtained in the flask culture tested, a ninefold increase in pigment production (4.4 g l(-1)) was achieved using a 5(-l) batch fermenter. Paecilomyces sinclairii secreted water-soluble red pigment into the culture medium. The pigment colour was strongly dependent on the pH of the solution: red at pH 3-4, violet at pH 5-9 and pink at pH 10-12. SIGNIFICANCE AND IMPACT OF THE STUDY: The high concentration of pigment (4.4 g l(-1)) produced by P. sinclairii demonstrates the possibility of commercial production of pigment by this strain, considering its relatively high production yield and light stability.  相似文献   

10.
The effect of culture conditions on -endotoxin production by strain S128 of Bacillus thuringiensis H-14 (locally isolated in Egypt) was investigated using a 10l working volume fermenter. Fermentation medium formulated from the inexpensive locally available soya (as a nitrogen source) and molasses (as a carbon source) was used. Aeration, agitation, pH and initial concentration of molasses were chosen as experimental factors and their influence on toxin yield was investigated using 24 central composite experimental design. The mathematical model obtained revealed that the optimal batch cultivation conditions with respect to agitation, pH, and initial concentration of molasses were 325 rev min–1, 7.1 and 2.1% (w/v) respectively. The mathematical model obtained indicated that by increasing the aeration rate over 0.89 v/v per minute the productivity could still be increased. A simulated scaling-up study, in which the Simplex method was applied, is also presented. The results of this investigation could be of great help for large-scale production of a cheap mosquito-larvicide in developing countries where mosquito-borne diseases are still a serious health and economic problem.  相似文献   

11.
Lo YC  Bai MD  Chen WM  Chang JS 《Bioresource technology》2008,99(17):8299-8303
In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H(2)-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H(2) energy. With an initial RS concentration of 0.8g/l, the H(2) production and yield was approximately 23.8ml/l and 1.21mmol H(2)/g RS (0.097mmol H(2)/g cellulose), respectively.  相似文献   

12.
An organism producing extracellular polysaccharide was isolated from soil and identified as Aeromonas hydrophila (Chester) Stanier. The effects of medium components and cultural conditions on production of the polysaccharide were studied. The optimal concentrations of carbon and nitrogen sources were 5% and 0.3%, respectively, for production of the polysaccharide. The optimal initial pH was 7~9. The maximum polysaccharide yield was obtained at 4~8 days of fermentation. From sucrose and raffinose as carbon source, the organism produced levan and acidic polysac-charide in the ratio of 7:3 and 4:6, respectively. From glucose, galactose, fructose, mannose, maltose and lactose, mainly acidic polysaccharide was produced. The acidic polysaccharide was found to contain galactose, mannose and glucuronic acid in a ratio of 5:4:2. The acidic polysaccharides obtained from sucrose and lactose seemed to be the same polysaccharide.  相似文献   

13.
Liu BF  Ren NQ  Ding J  Xie GJ  Cao GL 《Bioresource technology》2009,100(3):1501-1504
The effect of different gases, CO(2) concentration, and separation of CO(2) from reaction system on photo-fermentation H(2) production was investigated by batch culture in this study. Experimental results showed that different gases (Ar,N(2),CO(2), and air) as gas phase have obviously affected on photo-H(2) production and a high concentration of CO(2) can inhibit the growth and H(2) evolution of Rhodopseudomonas faecalis RLD-53. When CO(2) concentration at 5%, cell increased most rapidly the specific growth rate of 0.489 g/l/h and the specific growth rate fell to be 0.265 g/l/h when CO(2) concentration at 40%. However, the growth of RLD-53 at CO(2) concentration of 60-100% was almost completely inhibited. At CO(2) concentrations of 5% and 10%, the maximum H(2) yield was 2.54 and 2.59 mol-H(2)/mol acetate, respectively, and it was similar with the control (2.61 mol-H(2)/mol acetate). H(2) not produced when CO(2) concentration at 60-100%. In conclusion, separation of CO(2) from reaction system can stimulate H(2) production in the entire photo-H(2) production process and H(2) yield increased about 12.8-18.85% than the control.  相似文献   

14.
柠檬酸是利用微生物代谢生产的一种极为重要的有机酸.广泛应用于食品、饮料、化工、冶金、印染等各个领域。在国外,近10年来,利用固定化细胞生产柠檬酸已获得较广泛的研究〔1-6〕,国内也有学者指出,柠檬酸发酵的趋向是利用固定化细胞进行连续化生产⑺。而国内这方面的研究报道很少〔8,9〕。我们利用海藻酸钙凝胶包埋固定化黑曲霉细胞生产柠檬酸.探讨了碳源种类及其浓度对固定化细胞生产柠檬酸的影响。现将结果报道如下。  相似文献   

15.
The procedure for starting‐up continuously stirred tank reactors (CSTR) for acclimating anaerobic hydrogen‐producing microorganisms with sewage sludge was investigated. Initially, feeding with glucose and sucrose as well as mixing were carried out in semicontinuous mode; hydraulic retention time (HRT) was in an order of 20, 15, 10, 5, 2.5 and 2 days. When the pH declined to its lowest value (pH 5.18), it was adjusted to 6.7 using sodium hydroxide (1 N). At the same time, the semi‐continuous operation was changed to a continuous one. Finally, the pH was continuously regulated at approximately 6.7. The results indicate that this procedure can be used to cultivate seed sludge for hydrogen production from sewage sludge resulting in a large hydrogen production in less than 60 days. When the substrate was glucose, a hydrogen yield of 1.63 mol H2/mol glucose and a specific hydrogen production rate of 321 mmol H2/g VSS day at an HRT of 13.3 h was achieved. When the substrate was sucrose with the same HTR, a hydrogen yield of 4.45 mol H2/mol sucrose and a specific hydrogen production rate of 707 mmol H2/g VSS day was obtained.  相似文献   

16.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

17.
Production of lipase by the newly isolated Pseu-domonas species has been optimised. Various parameters like initial pH, temperature, incubation period, effect of agitation, inoculum age, inoculum concentration were optimised. It was observed that modified GYP media with 72 hrs incubation, pH 5.5, at 37?°C in agitation conditions were optimum for growth and production of lipase. While optimising the effect of some additional carbon and nitrogen sources, 7% (v/v) olive oil concentration, and 1% (w/v) mannose were found to be the best. In between prediction of the activities has been done through computer programming.  相似文献   

18.
To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pureculture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-H?/l/h. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81 mol-H?/mol-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 h?1 when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photofermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-H?/l/h, which was achievable in a sustainable manner.  相似文献   

19.
AIMS: To optimize the nutritional and environmental conditions for growth of and poly-beta-hydroxybutyrate (PHB) accumulation in Bacillus mycoides RLJ B-017. METHODS AND RESULTS: An isolate, identified as B. mycoides, was grown on different sources of carbon and nitrogen. Among these, sucrose, beef extract and di-ammonium sulphate were found to be the most suitable for growth and PHB accumulation. The overall maximum value of PHB (%) in cells, PHB yield (Yp/s) and productivities (Qp and qp) were 69.4 +/- 0.4% dry cell weight (DCW), 0.21 gp gS(-1), 0.104 +/- 0.012 gp l(-1) h(-1) and 0.03 gp gx(-1) h(-1), respectively when grown in a medium containing 20 gs l(-1) sucrose, supplemented with di-ammonium sulphate. The addition of beef extract increased the value of PHB (%) in cells, PHB yield and productivities by 17.58 +/- 0,3, 23.8, 19.23 +/- 0.3 and 13.8 +/- 0.2% , respectively. The overall maximum values of PHB (% DCW), PHB yield and productivities were obtained at pH 7.0 +/- 0 .1, temperature 30 +/- 0.5 degrees C, agitation 650 rev min(-1) and oxygen transfer rate 3.8 mmol O(2) l(-1) h(-1). CONCLUSIONS: Sucrose, glucose and fructose were found to be more suitable for cell growth and PHB accumulation, but sucrose was less expensive than glucose. Among the nitrogen sources, beef extract and di-ammonium sulphate promoted PHB synthesis. The accumulation of PHB was observed to be growth associated. SIGNIFICANCE AND IMPACT OF THE STUDY: Gram-positive bacteria have not been reported to accumulate large amounts of polyhydroxyalkanoate and hence have not been considered as potent candidates for industrial production. A number of Bacillus spp. have been reported to accumulate 9-44.5% DCW PHB. By comparison, Bacillus RLJ B-017 contained 69.4 +/- 0.4% DCW PHB. Therefore, this strain has been considered as a potent organism for industrial interest. A relatively high yield of PHB was obtained in this wild strain and PHB synthesis was independent of nutrient limitation. The conditions for the higher PHB yield and productivity will be optimized in the next phase using fed-batch culture.  相似文献   

20.
Protease producing halotolerant bacterium was isolated from saltern pond sediment (Tuticorin) and identified as Bacillus licheniformis (TD4) by 16S rRNA gene sequencing. Protease production was enhanced by optimizing the culture conditions. The nutritional factors such as carbon and nitrogen sources, NaCl and also physical parameters like incubation time, pH, agitation, inoculum size were optimized for the maximum yield of protease. Studies on the effect of different carbon and nitrogen sources revealed that xylose and urea enhances the enzyme production. Thus, with selected C–N sources along with 1 M NaCl the maximum protease production (141.46 U/mg) was obtained in the period of 24 h incubation at pH 8 under 250 rpm compared to the initial enzyme production (89.87 U/mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号