首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.  相似文献   

2.
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.  相似文献   

3.
Acetyl-CoA carboxylase from irradiated cell-suspension cultures of parsley (Petroselinum hortense) has been purified to apparent homogeneity. The procedure included affinity chromatography of the enzyme on avidinmonomer--Sepharose 4B. Molecular weights of about 420000 for the native enzyme and about 220000 for the enzyme subunit were determined respectively by gel filtration or sucrose-density-gradient sedimentation and by electrophoresis in the presence of dodecyl sulfate. The purified enzyme showed an isoelectric point of 5. The enzyme carboxylated the straight-chain acyl-CoA esters of acetate, propionate, and butyrate at decreasing rates in this order. The catalytic efficiency of the carboxylase was highest when ATP existed largely as MgATP2- complex. At the optimum pH of 8 the apparent Km values for the substrates were: acetyl-CoA, 0.15 mmol/1; bicarbonate, 1 mmol/1; MgATP2-, 0.07 mmol/1. The carboxylase was inhibited by greater than 50 mmol/l NaCl, KCl, or Tris/HCl buffer. The putative allosteric activator, citrate, stimulated the enzyme only slightly at concentrations below 2 mmol/l, but strongly inhibited the carboxylase at higher concentrations. The results of these studies demonstrate that several properties of the light-inducible acetyl-CoA carboxylase of parsley cells, an enzyme of the flavonoid pathway, are remarkably similar to those of acetyl-CoA carboxylases from a variety of other organisms.  相似文献   

4.
D. Scheel  H. Sandermann Jr. 《Planta》1977,133(3):315-320
Cell suspension cultures of parsley and soybean were incubated for 44 to 48 h with14C-labeled DDT or Kelthane; autoclaved cultures were used as controls. Most of the radioactivity became associated with the cells, and metabolites were isolated by a sequential extraction procedure. The metabolites amounted to 0.6 to 2.2% of the applied pesticide. Relatively non-polar metabolites were identified as DDE in the case of DDT, and remained unidentified in the case of Kelthane. Polar metabolites were also isolated and are as yet unidentified. They were chromatographically different from the known and less polar metabolites of DDT and Kelthane reported from animal and insect studies. [DDT-1,1,1-Trichloro-2,2-bis-(4-chlorophenyl)-ethane; Kelthane=(1,1-bis-(4-chlorophenyl)-2,2,2-trichloro-ethanol; DDE=1,1-Dichloro-2,2-bis-(4-chlorophenyl)-ethylene.]Abbreviations DDT 1,1,1-Trichloro-2,2-bis-(4-chlorophenyl)-ethane - Kelthane (1,1-bis-(4-chlorophenyl)-2,2,2-trichloro-ethanol - DDE 1,1-Dichloro-2,2-bis-(4-chlorophenyl)-ethylene - DDA 2,2-bis-(4-chlorophenyl)-acetic acid - DDOH 2,2-bis-(4-chlorophenyl)-ethanol - DDD 1,1-Dichloro-2,2-bis-(4-chlorophenyl)-ethane - DBP 4,4-Dichloro-benzophenone - DDMU 1-Chloro-2,2-bis-(4-chlorophenyl)-ethylene - DDM Bis-(4-chlorophenyl)-methane - FW-152 1,1-Bis-(4-chlorophenyl)-2,2-dichloro-ethanol - SDS sodium dodecylsulphate  相似文献   

5.
N. Duell-Pfaff  E. Wellmann 《Planta》1982,156(3):213-217
Flavonoid synthesis in cell suspension cultures of parsley (Petroselinum hortense Hoffm.) occurs only after irradiation with ultraviolet light (UV), mainly from the UV-B (280–320 nm) spectral range. However, it is also controlled by phytochrome. A Pfr/Ptot ratio of approximately 20% is sufficient for a maximum phytochrome response as induced by pulse irradiation. Continuous red and far red light, as well as blue light, given after UV, are more effective than pulse irradiations. The response to blue light is considerably greater than that to red and far red light. Continuous red and blue light treatments can be substituted for by multiple pulses and can thus probably be ascribed to a multible induction effect. Continuous irradiations with red, far red and blue light also increase the UV-induced flavonoid synthesis if given before UV. The data indicate that besides phytochrome a separate blue light photoreceptor is involved in the regulation of the UV-induced flavonoid synthesis. This blue light receptor seems to require the presence of Pfr in order to be fully effective.Abbreviations HIR high irradiance response - Pfr far red absorhing form of phytochrome - Ptet total phytochrome - UV ultraviolet light  相似文献   

6.
7.
Cell suspension cultures of parsley and soybean were incubated for 38 h with 14C-labeled benzo[a]pyrene; autoclaved cultures were used as controls. Metabolites were isolated by a sequential extraction procedure and further studied by chromatography or by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The soluble metabolites amounted to 1–2.2% in the case of parsley cells, and 19–28% in the case of soybean cells. These metabolites varied in polarity, some being soluble in organic solvent or aqueous buffer while other metabolite fractions were soluble only in hot aqueous sodium dodecylsulphate. In addition, a significant amount of an insoluble metabolite fraction was isolated from the culture fluid as well as the cellular material of soybean suspension cultures.Abbreviations BP benzo[a]pyrene - SDS sodium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

8.
9.
4-Coumarate:CoA ligase (EC 6.2.1.12) was isolated from 8-day-old cell suspension cultures of parsley (Petroselinum hortense Hoffm.) which had been irradiated with ultraviolet light for 15 h. The enzyme was partially purified by fractionation with MnCl2 and (NH4)2SO4 and by column chromatography on diethylaminoethyl cellulose, hydroxyapatite, and aminohexyl-Sepharose. A 90-fold increase in specific activity with an overall yield of 20% was achieved. Analytical gel electrophoresis indicated the occurrence of only one 4-coumarate:CoA ligase species in the final enzyme preparation. The enzyme was largely specific for 4-coumarate and other derivatives of cinnamic acid. 4-Coumarate had the lowest apparent Km and the highest VKm values (1.4 × 10?5, m and 14.7 × 105 pkatal × m?1, respectively) of all substrates tested. Only the trans isomer of 4-coumarate was activated. The two cosubstrates, ATP and CoA, exhibited sigmoidal saturation kinetics, which were interpreted as indicating homotropic, allo-steric effects. A molecular weight of about 67,000 was estimated for 4-coumarate:CoA ligase. The substrate specificity of the enzyme was in agreement with its proposed function in flavonoid biosynthesis.  相似文献   

10.
11.
Cell suspension cultures from parsley (Petroselinum hortense Hoffm.) were labelled in vivo with [2-3H] adenosine. The RNA isolated from the ribosomal pellet was fractionated on an oligo(dT)-cellulose column. Approximately 1.5% of the RNA, representing about 15% of the total radioactivity, was retained at high salt concentrations and eluted at low ionic strength. As determined by two independent methods, this fraction contained poly(A) segments with an average length of about 80 nucleotides. It was active as template in a cell-free system from wheat germ, directing the synthesis of peptides ranging in molecular weight from about 4000-40000 daltons.  相似文献   

12.
The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one.  相似文献   

13.
On administration of aflatoxin B1 to whole parsley (Petroselinum crispum) plants, a derivative was formed, which was shown to be aflatoxicol by its chromatographic properties and mass spectrometry. Optimum conditions for the production of the derivative was on the second day after administration of the toxin to the plants, which were 90 days old after germination. Cell-free preparations of parsley were found not to produce aflatoxicol A from added aflatoxin B1; instead they formed two new derivatives, which from chromatographic properties, were shown to be more polar than either aflatoxin B1 or aflatoxicol A.  相似文献   

14.
Phosphoglucomutase (EC 2.7.5.1, PGM) was purified to homogeneity from maize (Zea mays L.) leaves. The enzyme had specific activity 11. 7 U/mg protein and molecular mass (determined by gel-chromatography) of 133 +/- 4 kD. The molecular mass of PGM subunits determined by SDS-electrophoresis was 66 +/- 3 kD. The enzyme had Km for glucose-1-phosphate and glucose-1,6-diphosphate of 20.0 +/- 0.9 and 16.0 +/- 0.8 &mgr;M, respectively. Concentrations of glucose-1-phosphate and glucose-1,6-diphosphate above 3 and 0.4 mM, respectively, cause substrate inhibition. The enzyme activity was maximal at pH 8.0 and temperature 35 degreesC. Magnesium ions activate the enzyme and manganese ions inhibit it. 3-Phosphoglycerate is an uncompetitive inhibitor of the enzyme (Ki = 1.22 +/- 0.05 mM). Fructose-6-phosphate, 6-phosphogluconate, and ADP activate PGM, whereas ATP, UTP, and AMP inhibit the enzyme. Citrate was also a potent inhibitor, inhibitory effects of isocitrate and cis-aconitate being less pronounced.  相似文献   

15.
The isolation and purification of DNA-dependent RNA polymerase I (EC 2.7.7.6) from parsley (Petroselinum crispum) callus cells grown in suspension culture is described. The enzyme was solubilized from isolated chromatin. Purification was achieved by using DEAE- and phospho-cellulose in batches, followed by column chromatography on DEAE- and phospho-cellulose (two columns) and density-gradient centrifugation. The highly purified enzyme was stable over several months. The properties of purified parsley RNA polymerase I were investigated. Optimum concentration for Mn2+ was 1 mM, and for Mg2+ 4-6 mM, Mn2+ was slightly more stimulatory than Mg2+. The enzyme was most active at low ionic strengths [10-20 mM-(NH4)SO4]. The influence of various phosphates was tested: pyrophosphate inhibited RNA polymerase at low concentrations, whereas orthophosphate had no effect on the enzyme activity. ADP was slightly inhibitory, and AMP had no effect on the enzyme reaction. Nucleoside triphosphates and bivalent cations in equimolar concentrations in the range 4-11 mM did not influence the RNA synthesis in vitro. Free nucleoside triphosphates in excess of this 1:1 ratio inhibited the enzyme activity, unlike free bivalent cations, which stimulated RNA polymerase I.  相似文献   

16.
The effect of mercury (Hg) on the growth and survival of parsley (Petroselinum crispum) was explored at various treatments. The plants were grown in pots having Hoagland's solution to which various Hg treatments were applied and placed under greenhouse conditions. The treatments were: no metal applied (control) and six doses of Hg as mercuric chloride for 15 days. Linear trend of Hg accumulation was noted in roots, stems, and leaves with increasing Hg treatments. The maximum Hg concentration in root, stem and leaf was 8.92, 8.27, and 7.88 at Hg treatments of 25 mg l–1, respectively. On the whole, Hg accumulation in different plant parts was in the following order: leaves > stem > roots. Linear trend was also observed for Bioaccumulation Factor (BF) and Translocation Factor (TF) with increasing Hg concentrations in the growth medium. The highest respective BFHg and TFHg values were 9.32 and 2.02 for the Hg treatments of 25 and 50 mg l–1. In spite of the reduced growth in the presence of Hg, the plant has phytoremediation potential. It is recommended that parsley should not be cultivated in Hg contaminated sites in order to avoid dietary toxicity.  相似文献   

17.
Flavanone synthase was isolated and purified about 300-fold from fermenter-grown, light-induced cell suspension cultures of Petroselinum hortense. The enzyme catalyzed the formation of the flavanone naringenin from p-coumaroyl-CoA and malonyl-CoA. Trapping experiments with an enzyme preparation, which was free of chalcone isomerase activity, revealed that in fact the flavanone and not the isomeric chalcone was the immediate product of the synthase reaction. Thus the enzyme is not a chalcone synthase as previously assumed. No coafactors were required for flavanone synthase activity. The enzyme was strongly inhibited by the two reaction products naringenin and CoASH, by the antibiotic cerulenin, by acetyl-CoA, and by several compounds reacting with sulfhydryl groups. Optimal enzyme activity was found at pH 8.0, at 30 degrees C, and at an ionic strength of 0.1--0.3 M potassium phosphate. EDTA, Mg2+, Ca2+, or Fe2+ at concentrations of about 0.7 muM did not affect the enzyme activity. Apparent molecular weights of approx. 120 000, 50 000, and 70 000, respectively, were determined for flavanone synthase and two metabolically related enzymes, chalcone isomerase and malonyl-CoA: flavonoid glycoside malonyl transferase. The partially purified flavanone synthase efficiently catalyzed the formation of malonyl pantetheine from malonyl-CoA and pantetheine. This malonyl transferase activity, and a general similarity with the condensation steps involved in the mechanisms of fatty acid and 6-methylsalicylic acid synthesis from "acetate units", are the basis for a hypothetical scheme which is proposed for the sequence of reactions catalyzed by the multifunctional flavanone synthase.  相似文献   

18.
采用石蜡切片法对伞形科(Apiaceae)棱子芹属(PleurospermumHoffm.)的宝兴棱子芹〔P.benthamii(Wall.ex DC.)Clarke〕和松潘棱子芹(P.franchetianumHemsl.)、西藏棱子芹(P.hookeriClarke var.thomsoniiClarke)和太白棱子芹(P.giraldiiDiels)、康定棱子芹(P.prattiiWolff)和瘤果棱子芹(P.wrightianumde Boiss.)的果实横切面的解剖结构特征进行了详细观察和比较分析。结果表明:6种植物虽然在外部形态上两两相似,但彼此间的果实解剖结构特征却存在一定的差异。共同特征是果棱均比较发达,且外果皮与中果皮分离,常形成空腔,每个果棱有1个明显的维管束,中果皮高度退化,果壁均很薄,棱槽和合生面均有油管,其中合生面油管数为棱槽油管数的2倍;差异主要表现在果实横切面外形、果体的压扁程度、果棱的发达程度、外果皮拱起程度及角质层的有无和厚度、维管束大小和着生位置、棱槽油管数以及合生面与侧棱的关系等方面。根据观察结果认为康定棱子芹与瘤果棱子芹不宜合并,建议将西藏棱子芹与太白棱子芹予以合并。  相似文献   

19.
In the present study, carbonic anhydrase (CA) enzyme was purified from rainbow trout (RT) liver with a specific activity of 4318 EUxmg(-1) and a yield of 38% using Sepharose-4B-L tyrosine-sulfanilamide affinity gel chromatography. The overall purification was approximately 2260-fold. To check the purity and determine subunit molecular weight of enzyme, SDS-polyacrylamide gel electrophoresis was performed, which showed a single band and MW of approx. 29.4 kDa. The molecular weight of native enzyme was estimated to be approx. 31 kDa by Sephadex-G 200 gel filtration chromatography. Optimum and stable pH were determined as 9.0 in 1 M Tris-SO(4) buffer and 8.5 in 1 M Tris-SO(4) buffer at 4 degrees C, respectively. The optimum temperature, activation energy (E(a)), activation enthalpy ((DeltaH) and Q(10) from Arrhenius plot for the RT liver CA were 40 degrees C, 2.88 kcal/mol, 2.288 kcal/mol and 1.53, respectively. The purified enzyme had an apparent K(m) and V(max) of 0.66 mM and 0.126 micromol x min(-1) for 4-nitrophenylacetate, respectively. K(cat) of the CA was found to be 32.8 s(-1). The inhibitory effects of low concentrations of different metals (Co(II), Cu(II), Zn(II) and Ag(I)) on CA activity were determined using the esterase method under in vitro conditions. The obtained IC(50) values, 50% inhibition of in vitro enzyme activity, were 0.03 mM for cobalt, 30 mM for copper, 47.1 mM for zinc and 0.01 mM for silver. K(i) values for these substances were also calculated from Linewaever-Burk plots as 0.050 mM for cobalt, 1.950 mM for copper, 7.035 mM for zinc and 2.190 mM for silver respectively and determined that cobalt and zinc inhibit the enzyme a competitive manner and copper and silver inhibit the enzyme in an uncompetitive manner.  相似文献   

20.
Glucose 6-phosphate dehydrogenase (G6PD) was purified from buffalo (Bubalus bubalis) erythrocytes and some characteristics of the enzyme were investigated. The purification procedure was composed of two steps: hemolysate preparation and 2('),5(')-ADP-Sepharose 4B affinity gel chromatography. Thanks to the two consecutive procedures, the enzyme, having a specific activity of 69.7EU/mg proteins, was purified 650-fold with a yield of 31%. Optimal pH, stable pH, optimal temperature, molecular weight, and K(M) and V(max) values for NADP(+) and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. In addition, K(i) values and the type of inhibition were determined by means of Lineweaver-Burk graphs obtained for such inhibitors as ATP, ADP, NADPH, and NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号