首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paradigms for transport along the biosynthetic route have changed dramatically over the past 15 years. Unlike the situation 15 years ago, the current paradigm involves sorting signals practically at every step of the pathway. In particular, at the exit from the Golgi complex, apical, basolateral and lysosomal targeting signals result in the generation of a variety of routes. Furthermore, it is now quite clear that not all sorting in the biosynthetic route occurs in the Golgi complex or the Trans Golgi Network (TGN). Sorting may occur distally to the Golgi, in recycling endosomes or in budded tubulosaccular structures, or it may occur proximally to the Golgi complex, at the exit from the ER. Several adaptors are candidates to sort apical and basolateral proteins but only AP1B and AP4 are currently involved. Progress is fast and future work should elucidate many of the open questions.  相似文献   

2.
The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolate such mutants, we identified a novel conserved protein, Avl9p, the absence of which conferred lethality in a vps1Delta apl2Delta strain background (lacking a dynamin and an adaptor-protein complex 1 subunit). Depletion of Avl9p in this strain resulted in secretory defects as well as accumulation of Golgi-like membranes. The triple mutant also had a depolarized actin cytoskeleton and defects in polarized secretion. Overexpression of Avl9p in wild-type cells resulted in vesicle accumulation and a post-Golgi defect in secretion. Phylogenetic analysis indicated evolutionary relationships between Avl9p and regulators of membrane traffic and actin function.  相似文献   

3.
Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in the selective packaging of anterograde cargo into coated transport vesicles budding from the ER [1]. In mammalian cells, these vesicles coalesce to form tubulo-vesicular transport complexes (TCs), which shuttle anterograde cargo from the ER to the Golgi complex [2] [3] [4]. In contrast, COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER [1] [5] [6] [7]. The binding of COPI to COPII-coated TCs [3] [8] [9], however, has led to the proposal that COPI binds to TCs and specifically packages recycling proteins into retrograde vesicles for return to the ER [3] [9]. To test this hypothesis, we tracked fluorescently tagged COPI and anterograde-transport markers simultaneously in living cells. COPI predominated on TCs shuttling anterograde cargo to the Golgi complex and was rarely observed on structures moving in directions consistent with retrograde transport. Furthermore, a progressive segregation of COPI-rich domains and anterograde-cargo-rich domains was observed in the TCs. This segregation and the directed motility of COPI-containing TCs were inhibited by antibodies that blocked COPI function. These observations, which are consistent with previous biochemical data [2] [9], suggest a role for COPI within TCs en route to the Golgi complex. By sequestering retrograde cargo in the anterograde-directed TCs, COPI couples the sorting of ER recycling proteins [10] to the transport of anterograde cargo.  相似文献   

4.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

5.
Giardia lamblia, which belongs to the earliest identified lineage to diverge from the eukaryotic line of descent, is one of many protists reported to lack a Golgi apparatus. Our recent finding of a developmentally regulated secretory pathway in G. lamblia makes it an ideal organism with which to test the hypothesis that the Golgi may be more readily demonstrated in actively secreting cells. These ultrastructural studies now show that a regulated pathway of transport and secretion of cyst wall antigens via a novel class of large, osmiophilic secretory vesicles, the encystation-specific vesicles (ESV), is assembled during encystation of G. lamblia. Early in encystation, cyst antigens are localized in simple Golgi membrane stacks and concentrated within enlarged Golgi cisternae which appear to be precursors of ESV. This would represent an unusual mechanism of secretory vesicle biogenesis. Later in differentiation, cyst antigens are localized within ESV, which transport them to the plasma membrane and release them by exocytosis to the nascent cell wall. ESV are not observed after completion of the cyst wall. In contrast to the regulated transport of cyst wall proteins, we demonstrate a distinct constitutive lysosomal pathway. During encystation, acid phosphatase activity is localized in endoplasmic reticulum, Golgi, and small constitutive peripheral vacuoles which function as lysosomes. However, acid phosphatase activity is not detectable in ESV. These studies show that G. lamblia, an early eukaryote, is capable of carrying out Golgi-mediated sorting of proteins to distinct regulated secretory and constitutive lysosomal pathways.  相似文献   

6.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

7.
Tubules and vesicles are membrane carriers involved in traffic along the endocytic and secretory routes. The small GTPase Arf6 regulates a recycling branch of short dynamic tubular intermediates used by major histocompatibility class I (MHC-I) molecules to traffic through vesicles between endosomes and the plasma membrane. We observed that Arf6 also affects a second network of very long and stable tubules containing MHC-I, many of which correspond to deep invaginations of the plasma membrane. Treatment with wortmannin, an inhibitor of phosphatidylinositol-3-phosphate kinase, prevents formation of the short dynamic tubules while increasing the number of the long and very stable ones. Expression of NefAAAA, a mutant form of HIV Nef, increases the number of cells containing the stable tubules, and is used here as a tool to facilitate their study. Photoactivation of NefAAAA-PA-GFP demonstrates that this molecule traffics from endosomes to the tubules. Finally, live-cell imaging also shows internalization of MHC-I molecules into these tubules, suggesting that this is an additional route for MHC-I traffic.  相似文献   

8.
Fusion of membrane vesicles has been implicated in many intracellular processes including the transport of proteins destined for secretion or storage. Vesicular transport coupled with membrane fusion has been demonstrated for rough endoplasmic reticulum to Golgi and Golgi to plasma membrane transport as well as receptor mediated endocytosis and receptor recycling. Recent studies with inhibitors suggest that metalloendoproteases may mediate a wide variety of intracellular fusion events. Thus, in order to examine the potential role of metalloendoproteases in both transport/secretion and endocytosis/recycling we have used selected dipeptide substrates to probe these processes in human HepG2 cells. Using pulse-chase labeling, immunoprecipitation, and polyacrylamide gel electrophoresis we show that transport and secretion of newly synthesized proteins along the exocytotic route were completely inhibited by substrate dipeptides (e.g. Cbz-Gly-Phe-amide, where Cbz is benzyloxycarbonyl) but not by irrelevant dipeptides (e.g. Cbz-Gly-Gly-amide). The effect was rapid, reversible, and specific. The secretory pathway was blocked between the rough endoplasmic reticulum and Golgi as well as Golgi and plasma membrane as judged by the status of N-glycosylation intermediates. In addition, these inhibitors specifically inhibited protein synthesis without alterations in cellular ATP concentrations. However, cell-free amino acid incorporation was not inhibited. Receptor-mediated uptake of asialoglycoproteins was specifically and reversibly inhibited by dipeptide substrates. This effect appears to be secondary to inhibition of recycling as neither ligand binding nor internalization were affected. Thus the present observations suggest that metalloendoprotease activity may be involved in the regulation of multiple intracellular pathways perhaps at the level of vesicular fusion events.  相似文献   

9.
The secretory pathway maintains multiple quality control checkpoints. Initially, endoplasmic reticulum-associated degradation pathways monitor protein folding to retain and eliminate aberrant products. Despite its broad client range, some molecules escape detection and traffic to Golgi membranes. There, a poorly understood mechanism termed Golgi quality control routes aberrant proteins for lysosomal/vacuolar degradation. To better understand Golgi quality control, we examined the processing of the obligate substrate Wsc1p. Misfolded Wsc1p does not use routes of typical vacuolar membrane proteins. Instead, it partitions into intralumenal vesicles of the multivesicular body (MVB) pathway, mediated by the E3 ubiquitin ligase Rsp5p. Its subsequent transport to the vacuolar lumen is essential for complete molecule breakdown. Surprisingly, the transport mode plays a second crucial function in neutralizing potential substrate toxicity. Eliminating the MVB sorting signal diverted molecules to the vacuolar limiting membrane, resulting in the generation of toxic by-products. These data demonstrate a new role of the MVB pathway in protein quality control.  相似文献   

10.
The GTPase Rab1 regulates endoplasmic reticulum-Golgi and early Golgi traffic. The guanine nucleotide exchange factor (GEF) or factors that activate Rab1 at these stages of the secretory pathway are currently unknown. Trs130p is a subunit of the yeast TRAPPII (transport protein particle II) complex, a multisubunit tethering complex that is a GEF for the Rab1 homologue Ypt1p. Here, we show that mammalian Trs130 (mTrs130) is a component of an analogous TRAPP complex in mammalian cells, and we describe for the first time the role that this complex plays in membrane traffic. mTRAPPII is enriched on COPI (Coat Protein I)-coated vesicles and buds, but not Golgi cisternae, and it specifically activates Rab1. In addition, we find that mTRAPPII binds to γ1COP, a COPI coat adaptor subunit. The depletion of mTrs130 by short hairpin RNA leads to an increase of vesicles in the vicinity of the Golgi and the accumulation of cargo in an early Golgi compartment. We propose that mTRAPPII is a Rab1 GEF that tethers COPI-coated vesicles to early Golgi membranes.  相似文献   

11.
Recent work has shown that the cation-independent mannose 6-phosphate and the 78 kDa receptors for lysosomal enzyme targeting are located in different cell compartments. While the mannose 6-phosphate receptor is enriched in the Percoll fractions that contain Golgi apparatus, most of the 78 kDa receptor is localized in a heavy fraction at the bottom of the Percoll gradient. This report presents the biosynthetic transport of the 78 kDa receptor. Newly synthesized 78 kDa receptor was transported to Golgi from endoplasmic reticulum with a half life of 5 min. From the Golgi apparatus, the receptor takes two routes; about 15-25% is transported to the plasma membrane, and the rest migrates to late endosomes, subsequently to prelysosomes and finally to the dense vesicles. The 78 kDa receptor starts appearing at the dense vesicles 120 min after biosynthesis and reaches a maximum of 40-50% of the total receptor. Treatment of cells with NH4Cl causes depletion of the receptor from the dense vesicles and prelysosomes and corresponding augmentation in endosomes and plasma membrane. These results suggest that the 78 kDa receptor cycles between compartments and that the dense vesicles seem to represent the most distal compartment in the biosynthetic pathway of this receptor.  相似文献   

12.
Defects in conserved oligomeric Golgi (COG) complex result in multiple deficiencies in protein glycosylation. On the other hand, acute knock-down (KD) of Cog3p (COG3 KD) causes accumulation of intra-Golgi COG complex-dependent (CCD) vesicles. Here, we analyzed cellular phenotypes at different stages of COG3 KD to uncover the molecular link between COG function and glycosylation disorders. For the first time, we demonstrated that medial-Golgi enzymes are transiently relocated into CCD vesicles in COG3 KD cells. As a result, Golgi modifications of both plasma membrane (CD44) and lysosomal (Lamp2) glycoproteins are distorted. Localization of these proteins is not altered, indicating that the COG complex is not required for anterograde trafficking and accurate sorting. COG7 KD and double COG3/COG7 KD caused similar defects with respect to both Golgi traffic and glycosylation, suggesting that the entire COG complex orchestrates recycling of medial-Golgi-resident proteins. COG complex-dependent docking of isolated CCD vesicles was reconstituted in vitro, supporting their role as functional trafficking intermediates. Altogether, the data suggest that constantly cycling medial-Golgi enzymes are transported from distal compartments in CCD vesicles. Dysfunction of COG complex leads to separation of glycosyltransferases from anterograde cargo molecules passing along secretory pathway, thus affecting normal protein glycosylation.  相似文献   

13.
Dogmatic views of how proteins and other cellular components may traffic within and between eukaryotic cells have been challenged in the past few years. Beyond the classical secretory/exocytic pathway and its established players, other pathways of cell surface membrane transport, generally termed “unconventional secretion,” are now better understood. More insights have also been gleaned on the roles of secreted or shedding microvesicles, either exosomal or ectosomal in origin, in unconventional secretion. Recent works have also revealed key molecular components, particularly the Golgi reassembly stacking protein (GRASP), and the importance of stress‐induced autophagy, in unconventional exocytic transport. This GRASP and autophagy‐dependent (GAD) mode appears to underlie the unconventional exocytosis of many soluble and membrane cargoes. Likewise, recent findings have revealed transport processes that contrast the classically known mitochondria import, namely vesicular transport from the mitochondria to peroxisomes and lysosomes. Mitochondria‐peroxisomal targeting of mitochondria‐derived vesicles appears to involve the retromer complex, which was classically associated with endosome‐Golgi membrane traffic. The routes of intracellular membrane transport and communications between eukaryotic organelles now appear far more complex that one would have imagined 10 years ago. J. Cell. Physiol. 227: 3722–3730, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golgi to the vacuole and in targeting of aminopeptidase I from the cytosol to the vacuole. VTI1 interacts genetically with the vacuolar t-SNARE VAM3, which is required for transport of both alkaline phosphatase and aminopeptidase I to the vacuole. The v-SNARE Nyv1p forms a SNARE complex with Vam3p in homotypic vacuolar fusion; however, we find that Nyv1p is not required for any of the three biosynthetic pathways to the vacuole. v-SNAREs were thought to ensure specificity in membrane traffic. However, Vti1p also functions in two additional membrane traffic pathways: Vti1p interacts with the t-SNAREs Pep12p in traffic from the TGN to the prevacuolar compartment and with Sed5p in retrograde traffic to the cis-Golgi. The ability of Vti1p to mediate multiple fusion steps requires additional proteins to ensure specificity in membrane traffic.  相似文献   

15.
Summary Ultrastructural aspects of the secretory and the endocytotic pathways and the lysosomal system of corpus cardiacum glandular cells (CCG cells) of migratory locusts were studied using morphological, marker enzyme, immunocytochemical and tracer techniques. It is concluded that (1) the distribution of marker enzymes of trans Golgi cisternae and trans Golgi network (TGN) in locust CCG cells corresponds to that in most non-stimulated vertebrate secretory cell types; (2) the acid phosphatase-positive TGN in CCG cells is involved in sorting and packaging of secretory material and lysosomal enzymes; (3) these latter substances are produced continuously; (4) at the same time, superfluous secretory granules and other old cell organelles are degraded; (5) the remarkable endocytotic activity in the cell bodies and the minor endocytotic activity in cell processes are coupled mainly to constitutive uptake of nutritional and/or regulatory (macro)molecules, rather than to exocytosis; (6) plasma membrane recycling occurs mainly by direct fusion of tubular endosomal structures with the plasma membrane and little traffic passes the Golgi/TGN; and (7) so-called cytosomes arise mainly from autophagocytotic vacuoles and represent a special kind of complex secondary lysosomes involved in the final degradation of endogenous (cell organelles) and exogenous material.  相似文献   

16.
《Autophagy》2013,9(1):182-184
Autophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum, plasma membrane, and recycling endosomes. We recently observed that ATG9 localizes on the plasma membrane in clathrin-coated structures and is internalized following a classical endocytic pathway through early and then recycling endosomes. By contrast, ATG16L1 is also internalized by clathrin-mediated endocytosis but via different clathrin-coated pits, and appears to follow a different route to the recycling endosomes. The R-SNARE VAMP3 mediates the coalescence of the 2 different pools of vesicles (containing ATG16L1 or ATG9) in recycling endosomes. The heterotypic fusion between ATG16L1- and ATG9-containing vesicles strongly correlates with subsequent autophagosome formation. Thus, ATG9 and ATG16L1 both traffic from the plasma membrane to autophagic precursor structures and provide 2 routes from the plasma membrane to autophagosomes.  相似文献   

17.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

18.
Autophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum, plasma membrane, and recycling endosomes. We recently observed that ATG9 localizes on the plasma membrane in clathrin-coated structures and is internalized following a classical endocytic pathway through early and then recycling endosomes. By contrast, ATG16L1 is also internalized by clathrin-mediated endocytosis but via different clathrin-coated pits, and appears to follow a different route to the recycling endosomes. The R-SNARE VAMP3 mediates the coalescence of the 2 different pools of vesicles (containing ATG16L1 or ATG9) in recycling endosomes. The heterotypic fusion between ATG16L1- and ATG9-containing vesicles strongly correlates with subsequent autophagosome formation. Thus, ATG9 and ATG16L1 both traffic from the plasma membrane to autophagic precursor structures and provide 2 routes from the plasma membrane to autophagosomes.  相似文献   

19.
The Golgi complex of mammalian cells is composed of cisternal stacks that function in processing and sorting of membrane and luminal proteins during transport from the site of synthesis in the endoplasmic reticulum to lysosomes, secretory vacuoles, and the cell surface. Even though exceptions are found, the Golgi stacks are usually arranged as an interconnected network in the region around the centrosome, the major organizing center for cytoplasmic microtubules. A close relation thus exists between Golgi elements and microtubules (especially the stable subpopulation enriched in detyrosinated and acetylated tubulin). After drug-induced disruption of microtubules, the Golgi stacks are disconnected from each other, partly broken up, dispersed in the cytoplasm, and redistributed to endoplasmic reticulum exit sites. Despite this, intracellular protein traffic is only moderately disturbed. Following removal of the drugs, scattered Golgi elements move along reassembling microtubules back to the centrosomal region and reunite into a continuous system. The microtubule-dependent motor proteins cytoplasmic dynein and kinesin bind to Golgi membranes and have been implicated in vesicular transport to and from the Golgi complex. Microinjection of dynein heavy chain antibodies causes dispersal of the Golgi complex, and the Golgi complex of cells lacking cytoplasmic dynein is likewise spread throughout the cytoplasm. In a similar manner, kinesin antibodies have been found to inhibit Golgi-to-endoplasmic reticulum transport in brefeldin A-treated cells and scattering of Golgi elements along remaining microtubules in cells exposed to a low concentration of nocodazole. The molecular mechanisms in the interaction between microtubules and membranes are, however, incompletely understood. During mitosis, the Golgi complex is extensively reorganized in order to ensure an equal partitioning of this single-copy organelle between the daughter cells. Mitosis-promoting factor, a complex of cdc2 kinase and cyclin B, is a key regulator of this and other events in the induction of cell division. Cytoplasmic microtubules depolymerize in prophase and as a result thereof, the Golgi stacks become smaller, disengage from each other, and take up a perinuclear distribution. The mitotic spindle is thereafter put together, aligns the chromosomes in the metaphase plate, and eventually pulls the sister chromatids apart in anaphase. In parallel, the Golgi stacks are broken down into clusters of vesicles and tubules and movement of protein along the exocytic and endocytic pathways is inhibited. Using a cell-free system, it has been established that the fragmentation of the Golgi stacks is due to a continued budding of transport vesicles and a concomitant inhibition of the fusion of the vesicles with their target membranes. In telophase and after cytokinesis, a Golgi complex made up of interconnected cisternal stacks is recreated in each daughter cell and intracellular protein traffic is resumed. This restoration of a normal interphase morphology and function is dependent on reassembly of a radiating array of cytoplasmic microtubules along which vesicles can be carried and on reactivation of the machinery for membrane fusion.  相似文献   

20.
The secretory pathway of eukaryotic cells comprises a network of organelles that connects three large membranes, the plasma membrane, the vacuole and the endoplasmic reticulum. The Golgi apparatus and the various post-Golgi organelles that control vacuolar sorting, secretion and endocytosis can be regarded as intermediate organelles of the endocytic and biosynthetic routes. Many processes in the secretory pathway have evolved differently in plants and cannot be studied using yeast or mammalian cells as models. The best characterized organelles are the Golgi apparatus and the prevacuolar compartment, but recent work has shed light on the role of the trans Golgi network, which has to be regarded as a separate organelle in plants. In this study, we wish to highlight recent findings regarding the late secretory pathway and its crosstalk with the early secretory pathway as well as the endocytic route in plants. Recently published findings and suggested models are discussed within the context of known features of the equivalent pathway in other eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号