首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
拟南芥WRKY61转录因子的转录活性与互作蛋白分析   总被引:2,自引:0,他引:2  
该研究采用双荧光素酶报告系统、酵母双杂交和双分子荧光互补实验,对拟南芥AtWRKY61的转录活性及与AtWRKY61转录因子的互作蛋白进行了分析,并用qRT-PCR方法分析AtWRKY61对多种非生物逆境的响应特征,为进一步揭示AtWRKY61的功能与分子调控机制奠定基础。绿色荧光蛋白介导的亚细胞定位分析显示,AtWRKY61定位于细胞核内;基于原生质体的双荧光素酶报告系统和酵母实验发现,AtWRKY61具有转录抑制活性。qRT-PCR分析表明,AtWRKY61对多种非生物逆境的处理具有明显的响应,可能是在多条信号通路中发挥作用。酵母双杂交与双分子荧光互补分析表明,AtWRKY61与自身以及同组的AtWRKY9和AtWRKY72存在互作关系,暗示可能通过形成WRKY复合物来行使特定的转录抑制功能。  相似文献   

2.
付乾堂  余迪求 《遗传》2010,32(8):848-856
WRKY 转录因子家族在调控植物逆境诱导反应、生长发育及其信号转导等方面起着重要的分子生物学功能。文章采用Northern 杂交的方法, 对拟南芥3个WRKY基因进行表达谱分析。结果表明: AtWRKY25、AtWRKY26和AtWRKY33受多种非生物逆境因子(温度因子、高盐、渗透胁迫和激素脱落酸)的影响, 其中低温和高盐对AtWRKY25、AtWRKY26和AtWRKY33的诱导尤为明显, 表明这3个AtWRKY基因可能在响应环境信号方面起着一定的作用。作为序列相似性较高的AtWRKY25、AtWRKY26和AtWRKY33对一些胁迫因子的表达模式呈现一定的相似性; 但AtWRKY33受高温的抑制和低温的快速诱导, 与另外两个基因的表达模式不同, 推测它们对温度胁迫因子的反应存在差异。此外, 对启动子序列的生物信息学分析发现, 3个基因的启动子包含多个与非生物逆境反应相关的顺式作用元件。  相似文献   

3.
WRKY转录因子是植物一类比较大的基因家族,在水稻中已鉴定出102个成员。研究表明WRKY转录因子在植物生长发育、抗病耐逆等方面都具有重要的作用。本研究利用基因芯片数据结合实时定量分析,对水稻Os WRKY转录因子基因在不同的非生物逆境下的表达进行了分析,发现至少有33个Os WRKY基因同时对任何两种非生物胁迫因子做出响应,且所选20个基因中,13个基因可被ABA所诱导。OsWRKY基因这种重叠表达的特性,预示着这些基因在非生物逆境中具有功能多效性,对于培育抗逆境水稻品种具有重要的理论与实践意义。  相似文献   

4.
WRKY是植物中最大的转录因子家族之一.本文对水稻WRKY42基因的转录分析发现,该基因在水稻苗期和花药中转录,其蛋白质可在各时期的叶片中检测到.在Xa21介导的抗白叶枯病过程中,接菌后期可检测到明显的诱导表达条带,比较其在抗、感和对照反应中的表达丰度发现,在抗、感反应中的表达相似但均明显大于对照反应,推测WRKY42蛋白质在水稻-白叶枯病菌互作反应中发挥作用.我们克隆并在细菌中表达了WRKY42蛋白质,采用微量热泳动(microscale thermophoresis)技术,调查了WRKY42与病程相关基因PR1a和PR1b启动子区顺式元件W-box的互作,发现它们之间可发生特异结合,其解离常数分别为73.3μmol/L和58.3μmol/L.上述数据提供了WRKY42调控下游基因的直接证据,支持WRKY42在水稻抗病过程中发挥作用.文章提出了WRKY转录因子在水稻与白叶枯病菌互作过程中的作用模式.  相似文献   

5.
植物暴露在细菌或其它微生物病原体下,会形成全身防御,称为系统获得性抗性SAR(Systemic Acquired Resistance),该系统可以在病原体二次侵染时有效抑制病原体对植物的伤害。其中,WRKY转录因子和病程相关蛋白PRs(Pathogenesis-related proteins)在植物抗病信号调控途径中起着重要作用。本研究以模式植物拟南芥为实验材料,对WRKY6和PR1(PATHOGENESIS RELATED)两个转录因子进行初步研究。首先,从拟南芥eFP数据库中获得WRKY6和PR1的基因表达数据,进行生物信息学分析,获得WRKY6和PR1基因在不同胁迫条件下的表达热图。其次,通过实时荧光定量PCR技术,比较了经过生物胁迫和非生物胁迫处理后WRKY6和PR1的基因表达水平。结果表明,拟南芥经过生物胁迫丁香假单胞菌[Pseudomonas syringae pv.tomato(Pst) DC3000]处理后,WRKY6和PR1的基因表达模式具有一定的相似性,然而经过非生物胁迫和机械损伤组合处理后,WRKY6和PR1基因又呈现出不同的表达模式。本研究初步探索了WRKY6和PR1基因的表达模式及其关系,为今后进一步研究系统性获得抗性应答机制提供了思路。  相似文献   

6.
WRKY基因家族是主要存在于植物中的转录因子,拟南芥中至少有74个成员。根据锌指结构特征和WRKY结构域的数目,可以将WRKY转录因子分为三大类。拟南芥WRKY68属于第Ⅱ类WRKY蛋白。通过GUS染色和qRT PCR分析各组织部位的表达情况,发现WRKY68在根中的表达量是最高的,其次是幼嫩的叶片和老的荚果中。各种处理条件下的表达水平显示,IAA和高温处理后,WRKY68的表达明显上调,PstDC3000、JA、SA、NAA轻微诱导WRKY68的表达,而Botrytis、NaCl、甘露醇、PEG、脱水、ACC、ABA抑制WRKY68的表达,根据以上实验结果,我们推测WRKY68可能参与生长素和温度调控的植物形态建成及发育过程。  相似文献   

7.
拟南芥WRKY8转录因子能与VQ蛋白家族成员VQ9相互作用共同调控植物的耐盐反应。本研究中进一步发现,WRKY8能与多个VQ蛋白在酵母细胞中相互作用,其中VQ5、VQ10、VQ11、VQ16、VQ20、VQ23及VQ32等与WRKY8之间有较强的相互作用,而VQ13、VQ14、VQ17、VQ21、VQ25及VQ31等与WRKY8之间的相互作用相对较弱。基因表达分析表明,WRKY8相关的VQ10、VQ11及VQ23基因受ABA诱导明显,其中VQ23基因受ABA诱导最高达241倍,表明它们可能参与调控植物体内的ABA信号传导途径。此外,VQ10、VQ11及VQ23基因的表达还受高盐、高渗透压、低温或高温胁迫的诱导。亚细胞定位实验表明,VQ10蛋白特异性的定位于细胞核,而VQ11蛋白定位于细胞核和细胞质。研究结果表明,WRKY8转录因子相关的VQ10、VQ11及VQ23蛋白可能参与调控植物多种非生物逆境反应。  相似文献   

8.
拟南芥WRKY2转录调控因子可能参与调控渗透胁迫反应   总被引:1,自引:0,他引:1  
拟南芥WRKY2蛋白定位于细胞核,表明WRKY2是转录调控因子。WRKY2在不同器官组织中的表达分析显示在叶的表达量是最高的。在各种逆境条件下的表达分析显示:WRKY2的表达受NaCl和甘露醇比较强的诱导;KCl、LiCl、CaCl2和NaH2PO4均不诱导WRKY2的表达;ABA处理基本上不影响WRKY2基因的表达;另外,WRKY2的表达也不受病原菌、冷害和高温的诱导。这些结果表明WRKY2可能在NaCl和甘露醇引起的渗透胁迫反应中起一定的作用。  相似文献   

9.
DREB转录因子属于AP2/ERF转录因子家族,能够与DRE/CRT顺式作用元件特异性结合,调控与逆境应答基因的表达,因而在植物应对低温、干旱、高盐等逆境胁迫中发挥重要作用。该研究利用苹果全基因组数据,通过生物信息学手段鉴定苹果DREB转录因子家族成员,并分析DREB转录因子家族保守域特点与功能及表达情况。结果表明:从苹果全基因组中共鉴定出60个DREB转录因子家族成员,与拟南芥和水稻相比基本一致,通过引入拟南芥DREB基因进行系统发生分析,进一步可以将其细分为6个亚组;结构域和保守元件分析表明,DREB基因家族含有一个AP2保守结构域;染色体定位表明,苹果DREB基因分布于11条染色体上,部分基因存在串联复制现象;基因结构分析显示,该亚家族基因不含内含子。利用同源拟南芥RNA-Seq数据分析结果表明,DREB转录因子家族对低温、ABA调节等非生物胁迫具有调控作用,同时在DREB亚家族中每个亚组响应不同的非生物胁迫;通过分析DREB基因在不同组织中的表达情况,结果显示DREB基因在植物根部中的表达量最强,其次是叶。  相似文献   

10.
WRKY基因家族是主要存在于植物中的一大类转录调控因子,拥有很多家族成员.拟南芥WRKY25属于第Ⅰ类WRKY蛋白,参与植物生物和非生物胁迫反应.通过GUS染色和qRT-PCR发现WRKY25基因主要在根,叶和茎生叶中表达.过量表达WRKY25的转基因植株在长光照下比野生型拟南芥提前开花.通过RT-PCR检测与开花时间相关基因发现,AP1基因的表达量在培养21 d和27d的WRKY25过量表达植株中上调,由此推测WRKY25很可能通过增强AP1的表达来影响开花.  相似文献   

11.
为了研究植物WRKY转录因子感知盐碱胁迫信号并通过生理和生化调节途径来维持其耐性功能作用。克隆紫穗槐(Amorpha fruticosa)的AfWRKY42基因,分析盐(NaCl)和碱(NaHCO3)胁迫和组织器官的响应表达模式;通过超表达烟草(Nicotiana tabacum)研究其耐盐碱性功能。依据紫穗槐逆境胁迫下的转录组测序数据克隆AfWRKY42基因,生物信息分析其含有1个WRKY结构域,2个低复杂区域和1个螺旋区域。系统进化树分析氨基酸发现,AfWRKY42与木豆(Cajanus cajan)的WRKY47、藜豆(Mucuna pruriens)的WRKY42亲缘关系最近。通过拟南芥(Arabidopsis thaliana)叶肉原生质体的瞬时基因表达系统验证AfWRKY42蛋白定位在细胞核;AfWRKY42基因定量分析表明其在紫穗槐的嫩茎表皮中表达最高;检测经NaCl和NaHCO3处理的根和叶中的表达模式,结果表明总体受胁迫诱导AfWRKY42基因表达量增加,推测AfWRKY42基因与植物耐盐碱性调节相关。分析35S启动的过表达T3代转AfWRKY42基因烟草耐盐碱性表明...  相似文献   

12.
WRKY蛋白是一类在植物生长发育过程及生物与非生物胁迫过程中起重要调控作用的转录因子。该研究利用石榴全基因组数据,采用生物信息学的方法,对石榴WRKY转录因子家族成员蛋白理化性质、系统进化、基因结构、保守基序、顺式作用元件、蛋白互作及基因共表达和转录组表达模式进行系统分析。结果共鉴定出69个PgWRKY基因;分组鉴定和进化分析显示WRKY蛋白可分为Ⅰ、Ⅱ和Ⅲ共三大类型。顺式作用元件分析表明,PgWRKY基因广泛参与到非生物胁迫中;蛋白互作网络与共表达分析暗示PgWRKY基因在同一胁迫应答中可能作用一致并同时诱导表达;RNA-Seq数据分析表明,PgWRKY基因有一定的组织表达特异性,广泛参与植物营养、生殖生长以及根部逆境胁迫应答过程。  相似文献   

13.
WRKY转录因子是植物中的超级转录调控因子家族之一,WRKY蛋白通过特异性结合启动子区域的W-Box来调控基因的表达。它们具有多种生物学功能,参与了植物的生长发育、生物和非生物胁迫响应和激素信号的转导等进程,WRKY蛋白既能成为激活因子,亦可成为抑制因子。本文综述了近年来有关WRKY转录因子功能的研究进展。  相似文献   

14.
柱花草WRKY转录因子在低磷胁迫下的克隆与分析   总被引:2,自引:0,他引:2  
该研究依据生物信息学分析,采用RT-PCR方法从格拉姆柱花草[Stylosanthes guianensis (Aubl.)]中克隆出1个WRKY转录因子基因,命名为StWRKY45。该基因最大开放阅读框(ORF)为924bp,编码307个氨基酸,分子量为35.62kD,等电点为9.81。系统进化树分析表明,StWRKY45属于WRKY转录因子第Ⅱ类WRKY基因,与拟南芥AtWRKY45、AtWRKY57亲缘关系最近。实时荧光定量PCR结果表明,在非磷胁迫下(对照),StWRKY45基因在柱花草幼苗的根、茎、叶中都有表达,但表达量均相对较低;在低磷胁迫下,StWRKY45基因在格拉姆柱花草根、茎、叶中的表达基本随胁迫时间的延长逐渐升高,且均在叶中的表达量最高;在低磷胁迫96h时叶、茎中的相对表达量均达到最高,分别是对照的20.47倍、9.38倍,但在低磷胁迫72h时根中的相对表达量达到最高,为对照的9.29倍。研究表明,StWRKY45基因受低磷胁迫诱导高表达,推测StWRKY45基因可能参与柱花草对低磷胁迫的响应。  相似文献   

15.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸(JA)、水杨酸(SA)、脱落酸(ABA)和赤霉素(GA)等,在其信号传递途径中都起着重要作用。WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件Wbox(TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

16.
WRKY 蛋白质是一个植物特有的超级转录调控因子家族, 在拟南芥和水稻基因组中分别拥有至少74 个和97 个成员。最古老的WRKY 转录调控因子拥有2 个高度保守的WRKY 结构域, 可能起源于15~ 20 亿年前的真核生物。虽然所有WRKY 蛋白质主要通过特异地结合靶基因启动子区域的W 盒序列而调控其表达, 但各家族成员基因的生物学功能存在着各自的特异性。本文详细总结了WRKY 蛋白质在调控植物发育和逆境诱导反应的信号转导途径建立等方面的分子生物学功能。  相似文献   

17.
转录调控因子WRKY超级家族:起源、结构和功能   总被引:5,自引:1,他引:4  
WRKY蛋白质是一个植物特有的超级转录调控因子家族,在拟南芥和水稻基因组中分别拥有至少74个和97个成员。最占老的WRKY转录调控因子拥有2个高度保守的WRKY结构域,可能起源于15~20亿年前的真核牛物。虽然所有WRKY蛋白质主要通过特异地结合靶基因启动子区域的W盒序列而调控其表达,但各家族成员基因的生物学功能存在着各自的特异性。本文详细总结了WRKY蛋白质在调控植物发育和逆境诱导反应的信号转导途径建立等方面的分子生物学功能。  相似文献   

18.
为了揭示WRKYⅢ亚族转录因子基因在茎用莴苣不同生物学过程中的作用,该研究在茎用莴苣品种‘永安红’中克隆得到了2个WRKYⅢ亚族转录因子基因LsWRKY08和LsWRKY37,并对其进行了序列比对、进化树构建、qRT PCR分析、互作网络及启动子分析,为深入研究茎用莴苣WRKYⅢ亚族转录因子的功能、提高茎用莴苣的产量和品质奠定理论基础。结果表明:(1)LsWRKY08和LsWRKY37转录因子分别含有945和930 bp的开放阅读框,分别编码314和309个氨基酸。(2)qRT PCR分析表明,LsWRKY08基因在叶片中的表达量比在根和茎中的表达量高,其中在茎膨大过程中,其表达量逐渐降低,而在干旱、高温、低温、盐等非生物胁迫中的表达量均比对照提高,且LsWRKY08基因在SA处理中表达量较对照明显增加;LsWRKY37基因在根中的表达量比在叶和茎中高,其在茎膨大过程中的表达模式与LsWRKY08基因不同,LsWRKY37基因在不同非生物胁迫下的表达模式存在差异。(3)互作网络分析发现,LsWRKY08和LsWRKY37可与植物防御相关蛋白以及其他转录因子存在互作;启动子鉴定发现,LsWRKY08和LsWRKY37基因启动子区存在多个顺式作用元件,其中LsWRKY37启动子含有W box元件,表明LsWRKY37可能与其他WRKY转录因子之间存在自我调节和交叉调节。研究认为,LsWRKY08和LsWRKY37基因能响应不同非生物胁迫以及激素处理,但2个基因之间表达模式存在差异,推测同一亚族的转录因子基因功能可能存在差异,且LsWRKY08和LsWRKY37转录因子可通过与其他蛋白相互作用或受其他基因调控来参与不同的生物学过程。  相似文献   

19.
WRKY转录因子是高等植物特有的一类转录调控因子,也是植物生命活动中不可或缺的调控枢纽。研究发现,WRKY转录因子参与植物生长发育过程及多种生物与非生物逆境响应。本文分析了WRKY转录因子的分类及结构,对其多种作用机制包括上游调控、下游调控、蛋白质相互作用等进行了归类,总结了近年来在各类植物上发现的WRKY转录因子调控植物生长发育和参与植物响应生物及非生物逆境的多重功能。并针对目前WRKY转录因子的研究所存在的问题,提出部分意见,为进一步挖掘WRKY家族的功能机制奠定了基础。  相似文献   

20.
芥菜型油菜转录因子BjWRKY33基因克隆和表达分析   总被引:1,自引:0,他引:1  
植物WRKY基因家族是最大的转录因子家族之一,在非生物胁迫反应中起重要的调控作用。该研究利用RT-PCR技术分离获得芥菜型油菜WRKY转录因子基因(WRKY33)的完整开放读码框(ORF)序列,对其进行了生物信息学分析,并通过荧光定量PCR研究了其表达特性。分离到的芥菜型油菜WRKY转录因子命名为BjWRKY33,其ORF序列长度为1 470 bp,编码489个氨基酸组成的蛋白质,预测其分子量和等电点分别为54.036 kDa和8.56,未发现信号肽和跨膜结构,二级结构中无规则卷曲、α-螺旋、延伸直链和β-转角各占76.89%、10.43%、10.22%、2.45%。进化树分析表明, BjWRKY33蛋白质与甘蓝型油菜、白菜、甘蓝等十字花科植物亲缘关系较近。荧光定量PCR分析发现, BjWRKY33基因在不同组织皆有表达,其中在茎和蕾中表达量最低,激素(ABA)、低温(4°C)以及盐(NaCl)均能诱导叶片中BjWRKY33基因表达水平的升高。这些研究结果表明,BjWRKY33基因在维持植物正常生长发育和非生物逆境胁迫中可能发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号