首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
蛋白质翻译起始通常有两种机制,一是依赖帽结构的翻译,另一种是依赖5′非翻译区的内部核糖体进入位点(IRES).在后一种方式中,在某些IRES反式作用因子,如La蛋白、多聚嘧啶串结合蛋白1等的参与下,直接招募核糖体小亚基到mRNA的翻译起始位点,启始翻译.研究发现,参与细胞生长、分化、细胞周期进程、凋亡和压力调控的相关蛋白中通常含有IRES元件.基于功能,我们提出假说:转录激活因子1(ATF1)的5′-UTR可能具有IRES活性.为验证假说,首先构建了含全长ATF1 5′-UTR的双荧光素酶报告质粒|质粒转染结合报告酶活性分析显示,ATF1 5′-UTR在Bel7402、HCT-8和HEK293细胞中表现出不同的IRES活性|而此IRES活性与5′-UTR中的隐藏启动子无关.同时还发现,ATF1 5′-UTR在NIH3T3细胞中却没有IRES活性.与此结果相一致,Western印迹检测ATF1在这几种细胞系中的表达.结果显示,Bel7402、HCT 8和HEK293中ATF1蛋白质表达水平较高,而在NIH3T3中却极低. ATF1 5′-UTR的系列5′-删除突变及报告酶分析证明,ATF1 5′-UTR的完整性对其IRES活性大小发挥重要作用|其中5′端的204 bp序列对其IRES活性贡献较大. RNA-蛋白免疫共沉淀实验揭示,ATF1 5′-UTR可与La和PTBP1蛋白结合|抑制La和PTBP1蛋白质的表达,并可减低HEK293细胞中ATF1蛋白质表达水平.这些结果提示,La和PTBP1蛋白(两种ITAFs)为ATF1 5′-UTR发挥IRES活性所必需.总之,上述结果证明,ATF1 5′-UTR具有IRES活性,其活性发挥依赖与La和PTBP1蛋白的结合.上述发现为进一步研究La和PTBP1表达及亚细胞定位对ATF1 IRES调控机制的影响奠定了基础.  相似文献   

3.
翻译水平的调控是真核基因表达调控的重要环节.近年来的研究表明,许多真核基因的翻译依赖于RNA5′端非编码区的结构元件.一些小结构元件,如铁离子反应元件,具有1个茎环结构,由铁离子介导控制转铁蛋白的翻译.核糖开关通过结合特定代谢分子在2种结构状态下切换,调控可变剪接和翻译起始.另1个高度结构化的mRNA元件是内部核糖体进入位点,通过富集核糖体和起始因子促进基因的表达.本文综述了依赖于小结构元件、内部核糖体进入位点和核糖开关的真核基因翻译起始调控相应的研究成果和研究方法.对于研究的前景以及可能存在的挑战也作出阐述.  相似文献   

4.
5.
翻译水平的调控是真核基因表达调控的重要环节.近年来的研究表明,许多真核基因的翻译依赖于RNA 5′端非编码区的结构元件.一些小结构元件,如铁离子反应元件,具有1个茎环结构,由铁离子介导控制转铁蛋白的翻译. 核糖开关通过结合特定代谢分子在2种结构状态下切换,调控可变剪接和翻译起始.另1个高度结构化的mRNA元件是内部核糖体进入位点,通过富集核糖体和起始因子促进基因的表达.本文综述了依赖于小结构元件、内部核糖体进入位点和核糖开关的真核基因翻译起始调控相应的研究成果和研究方法.对于研究的前景以及可能存在的挑战也作出阐述.  相似文献   

6.
PRDM13是锌指蛋白转录抑制因子(positive regulatory domain zinc finger protein,PRDM) 家族中的一员,其在细胞分化、肿瘤的发生和恶性转化中起着重要的作用。而对于PRDM13 基因侧翼序列是否含有内部核糖体进入位点(internal ribosome entry site, IRES)及其功能所知甚少。本研究对PRDM13 5′端的非翻译区(5′UTR)进行IRES结构与功能分析,探索其在细胞血清饥饿应激条件下对PRDM13翻译的影响。实验发现,在血清饥饿的条件下,肝癌细胞Bel7402/WT中PRDM13的蛋白质水平增加,但是其mRNA水平基本没有变化。将PRDM13 5′UTR的序列插入双顺反子的报告载体(pRL-FL)中,并且将构建的载体(pRL-PRDM13-FL)转染进细胞中,结果显示,PRDM13 5′UTR含有IRES,且发现PRDM13 5′UTR中的105 nt(53~157)对其IRES的功能至关重要。在帽依赖的翻译(cap-dependent translation)机制被抑制时,IRES这种机制可有效维持PRDM13蛋白合成。本研究提供了在细胞压力条件下调节PRDM13蛋白合成的一种新的解释。  相似文献   

7.
GATA3(GA-TA-binding protein-3)是锌指蛋白GATA家族成员之一,在细胞的增殖和分化中起着重要的作用,GATA3在细胞中的异常表达也是导致众多肿瘤形成的原因。通过对GATA3m RNA 5′非翻译区(untranslated region,UTR)进行分析,发现其UTR长达557 bp并且具有复杂的二级结构。将GATA3 m RNA 5′UTR克隆至双荧光素酶报告载体p RL-FL中,瞬时转染至细胞中然后对细胞进行无血清培养后,发现GATA3 m RNA 5′UTR介导的翻译明显升高。将GATA3 m RNA 5′UTR克隆至Δp RL-FL载体上,瞬时转染细胞后检测萤火虫荧光素酶的表达,发现GATA3 m RNA 5′UTR不具有隐含启动子,进而确定GATA3 m RNA 5′UTR具有内部核糖体进入位点(internal ribosome entry sites,IRES)元件;进一步对GATA3 m RNA 5′UTR进行序列截短分析,发现GATA3 m RNA 5′UTR中345~557 bp区间可能是抑制IRES活性的调控元件,而95~344 bp区间则是IRES元件的主要活性中心调控域,并且在不同的细胞系中GATA3 IRES元件的活性存在显著的差异。该研究结果表明,GATA3m RNA的5′UTR可参与GATA3的表达调控。  相似文献   

8.
金珊  曾庆韬 《昆虫学报》2010,53(2):125-130
由于果蝇Drosophila群体中有很多自发突变其中包括多种体色突变, 因此它是一个研究自发突变的优秀的模式体系。本研究证实我们实验室发现的一个可以引起果蝇体色突变的自发突变(bsr)是一个黑檀体(e)的等位基因, 将其命名为ebsr。序列分析显示ebsr的5′端缺失了953个碱基, 其中包括外显子1后端的206个碱基及相连的内含子1的747个碱基。逆转录PCR结果显示5′端的缺失导致内含子1不能从mRNA中剪接掉, 由此导致该mRNA的翻译起始密码子AUG前端增加了一个3.2 kb的序列。该序列导致ebsr的mRNA的5′UTR(5′-untranslated region)区较野生型基因增加近3 kb的长度。通过mRNA二级结构分析发现这个增加的3 kb的片段可以形成复杂的颈环结构(stem-loop)。免疫印迹结果显示该突变基因没有基因产物产生。本研究进一步证实了由于mRNA的5′UTR序列结构的改变可以影响到蛋白质的翻译。  相似文献   

9.
在真核生物中,mRNA翻译过程包括起始、延伸和终止。其中,翻译的起始阶段最为重要且复杂,它决定了mRNA能否被有效翻译成蛋白质。根据翻译起始机制的不同,真核生物mRNA翻译可以分为传统的帽-依赖性翻译和替代机制帽-非依赖性翻译。当外部环境的刺激或细胞自身的改变使细胞处于应激状态时,传统的帽-依赖性翻译被抑制或下调,替代机制帽-非依赖性翻译得以启动,以保证翻译的顺利进行。真核生物在应激状态下为了维持蛋白质合成的需求,采用多种翻译起始机制来实现帽-非依赖性翻译。其中较常见的是IRES(internal ribosome entry site)、m6A修饰和CITE(cap-independent translation enhancer)所启动的翻译。这些机制允许核糖体在mRNA的特殊区域内部进行启动,而不依赖于传统的m7G帽结构。通过这些机制,真核生物可以在应激状态下仍然进行蛋白质合成,以满足细胞的需要。本文在总结传统帽-依赖性翻译研究进展基础上,着重介绍IRES、m6A和CITE所启动的帽-非依赖性翻译,为更好地探索细胞...  相似文献   

10.
为了探讨胰岛素受体底物-2(insulin receptor substrate-2,简称IRS-2)基因3′-非翻译区(3′-untranslated region,简称3′-UTR)的分子变异及其与2型糖尿病(type 2 diabetes mellitus,简称T2DM)的关系,从湖南地区128例T2DM患者外周血白细胞中提取基因组DNA,采用聚合酶链式反应(polymerase chain reaction,简称PCR).变性高效液相色谱(denaturing hish—performance liquid chromatography,简称DHPLC)技术筛查IRS-2基因3′-UTR,对DHPLC峰型异常样品进行序列分析。在18例T2DM患者IRS-2基因3′-UTR的4064bp处发现T→C的突变。IRS-2基因3′-UTR的T4064→C突变可能与T2DM有关。  相似文献   

11.
Protein synthesis is often regulated at the level of initiation of translation, making it a critical step. This regulation occurs by both the cis‐regulatory elements, which are located in the 5′‐ and 3′‐UTRs (untranslated regions), and trans‐acting factors. A breakdown in this regulation machinery can perturb cellular metabolism, leading to various physiological abnormalities. The highly structured UTRs, along with features such as GC‐richness, upstream open reading frames and internal ribosome entry sites, significantly influence the rate of translation of mRNAs. In this review, we discuss how changes in the cis‐regulatory sequences of the UTRs, for example, point mutations and truncations, influence expression of specific genes at the level of translation. Such modifications may tilt the physiological balance from healthy to diseased states, resulting in conditions such as hereditary thrombocythaemia, breast cancer, fragile X syndrome, bipolar affective disorder and Alzheimer's disease. This information tends to establish the crucial role of UTRs, perhaps as much as that of coding sequences, in health and disease.  相似文献   

12.
Translation of hepatitis C virus (HCV) genomic RNA is directed by an internal ribosome entry site (IRES) in the 5′-untranslated region (5′-UTR), and the HCV 3′-UTR enhances IRES activity. Since the HCV 3′-UTR has a unique structure among 3′-UTRs, we checked possible communication between the 5′- and the 3′-UTR of HCV during translation using chimeric reporter RNAs. We show that translation directed by the HCV IRES and by the HCV-like IRES of porcine teschovirus (PTV) which belongs to a quite distinct family of viruses (picornaviruses) or by the EMCV IRES is also enhanced by the HCV 3′-UTR or by a poly(A)-tail in different cell types.  相似文献   

13.
H Liu  J Yin  M Xiao  C Gao  AS Mason  Z Zhao  Y Liu  J Li  D Fu 《Gene》2012,507(2):106-111
Untranslated regions (UTRs) in eukaryotes play a significant role in the regulation of translation and mRNA half-life, as well as interacting with specific RNA-binding proteins. However, UTRs receive less attention than more crucial elements such as genes, and the basic structural and evolutionary characteristics of UTRs of different species, and the relationship between these UTRs and the genome size and species gene number is not well understood. To address these questions, we performed a comparative analysis of 5' and 3' untranslated regions of different species by analyzing the basic characteristics of 244,976 UTRs from three eukaryote kingdoms (Plantae, Fungi, and Protista). The results showed that the UTR lengths and SSR frequencies in UTRs increased significantly with increasing species gene number while the length and G+C content in 5' UTRs and different types of repetitive sequences in 3' UTRs increased with the increase of genome size. We also found that the sequence length of 5' UTRs was significantly positively correlated with the presence of transposons and SSRs while the sequence length of 3' UTRs was significantly positively correlated with the presence of tandem repeat sequences. These results suggested that evolution of species complexity from lower organisms to higher organisms is accompanied by an increase in the regulatory complexity of UTRs, mediated by increasing UTR length, increasing G+C content of 5' UTRs, and insertion and expansion of repetitive sequences.  相似文献   

14.
内部核糖体进入位点(IRES)是mRNA5'端非编码区的一段特殊序列,允许核糖体直接在此序列结合mRNA并起始翻译。对IRES的发现、分类、特征,以及细胞中是否存在该元件进行了简要综述。  相似文献   

15.
DAP5/p97 (death-associated protein 5) is a member of the eukaryotic translation initiation factor 4G family. It functions as a scaffold protein promoting cap-independent translation of proteins. During apoptosis, DAP5/p97 is cleaved by caspases at position 792, yielding an 86-kDa C-terminal truncated isoform (DAP5/p86) that promotes translation of several mRNAs mediated by an internal ribosome entry site. In this study, we report the crystal structure of the C-terminal region of DAP5/p97 extending between amino acids 730 and 897. This structure consists of four HEAT-Repeats and is homologous to the C-terminal domain of eIF4GI, eIF5, and eIF2Bε. Unlike the other proteins, DAP5/p97 lacks electron density in the loop connecting α3 and α4, which harbors the caspase cleavage site. Moreover, we observe fewer interactions between these two helices. Thus, previous mapping of this site by mutation analysis is confirmed here by the resolved structure of the DAP5/p97 C-terminus. In addition, we identified the position of two conserved aromatic and acidic boxes in the structure of the DAP5/p97 C-terminus. The acidic residues in the two aromatic and acidic boxes form a continuous negatively charged patch, which is suggested to make specific interactions with other proteins such as eIF2β. The caspase cleavage of DAP5/p97 removes the subdomain carrying acidic residues in the AA-box motif, which may result in exposure of a hydrophobic surface. These intriguing structural differences between the two DAP5 isoforms suggest that they have different interaction partners and, subsequently, different functions.  相似文献   

16.
Heterotrimeric translation initiation factor (IF) a/eIF2 (archaeal/eukaryotic IF 2) is present in both Eukarya and Archaea. Despite strong structural similarity between a/eIF2 orthologs from the two domains of life, their functional relationship is obscure. Here, we show that aIF2 from Sulfolobus solfataricus can substitute for its mammalian counterpart in the reconstitution of eukaryotic 48S initiation complexes from purified components. aIF2 is able to correctly place the initiator Met-tRNAi into the P-site of the 40S ribosomal subunit and accompany the entire set of eukaryotic translation IFs in the process of cap-dependent scanning and AUG codon selection. However, it seems to be unable to participate in the following step of ribosomal subunit joining. In accordance with this, aIF2 inhibits rather than stimulates protein synthesis in mammalian cell-free system. The ability of recombinant aIF2 protein to direct ribosomal scanning suggests that some archaeal mRNAs may utilize this mechanism during translation initiation.  相似文献   

17.
18.
Selenocysteine (Sec) incorporation is an essential process required for the production of at least 25 human selenoproteins. This unique amino acid is co-translationally incorporated at specific UGA codons that normally serve as termination signals. Recoding from stop to Sec involves a cis-acting Sec insertion sequence element in the 3′ untranslated region of selenoprotein mRNAs as well as Sec insertion sequence binding protein 2, Sec-tRNASec, and the Sec-specific elongation factor, eEFSec. The interplay between recoding and termination at Sec codons has served as a focal point in researching the mechanism of Sec insertion, but the role of translation initiation has not been addressed. In this report, we show that the cricket paralysis virus intergenic internal ribosome entry site is able to support Sec incorporation, thus providing evidence that the canonical functions of translation initiation factors are not required. Additionally, we show that neither a 5′ cap nor a 3′ poly(A) tail enhances Sec incorporation. Interestingly, however, the presence of the internal ribosome entry site significantly decreases Sec incorporation efficiency, suggesting a role for translation initiation in regulating the efficiency of UGA recoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号