首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
组织激肽释放酶(kallikrein-related peptidases,KLKs)是人类基因组中已知最大的丝氨酸蛋白酶家族。KLKs主要存在于体液和组织中,参与了广泛的生理过程,它们的异常调节与肿瘤的发生发展密切相关。该文总结了KLKs参与肿瘤发生发展的相关机制,以及部分KLKs成员在肿瘤发展进程中发挥的重要作用,综述了它们所介导的肿瘤发展进程以及作为肿瘤生物标志物和候选治疗靶点的研究进展。  相似文献   

2.
人组织激肽释放酶(kallikreins,KLKs)家族是一类结构具有高度同源性的丝氨酸蛋白酶,分布于各类组织中,其编码基因是人类基因组中最庞大的水解酶基因簇。随着对KLKs研究的不断深入,其在癌症发生发展过程中扮演的重要角色被逐步阐明,并在癌症预后与治疗方面具有重要价值。本文将对KLKs家族进行简单介绍,随后对KLKs在癌症发生与发展过程中的作用进行阐述。  相似文献   

3.
人组织激肽释放酶基因家族由KLK1-KLK15构成,编码一组丝氨酸蛋白酶。研究发现KLK基因家族涉及癌细胞的多种生物学功能,且其表达受类固醇激素的调节。人组织激肽释放酶4是丝氨酸蛋白酶家族的一个成员,在多种激素依赖性肿瘤如卵巢癌、前列腺癌、乳腺癌、子宫内膜癌中高表达,且表达量受雌激素、孕激素、雄激素不同程度的调节。近年来很多文献报道人组织激肽释放酶4涉及癌细胞的增殖、上皮间质转化及细胞外基质的降解等过程,可能促进了肿瘤的发生、发展,且与激素依赖性肿瘤的预后不良有关。这些研究显示人组织激肽释放酶4与激素依赖性肿瘤关系密切,是其潜在的肿瘤标记物和治疗靶点,随着研究的进一步深入,有望应用于激素依赖性肿瘤的早期诊断、病程监测和治疗。  相似文献   

4.
KLK7是丝氨酸蛋白酶家族的一员,能够水解桥粒蛋白从而引起角质层细胞间粘合力下降,是治疗皮肤脱屑的靶标。为了研究KLK7潜在特异性抑制点,本研究利用NCBI的blastp寻找人KLK蛋白同源序列,然后对获得的同源序列在Smart中验证是否有丝氨酸胰蛋白酶保守功能域。并基于获得的59个人KLK7蛋白同源序列进行进化踪迹分析,对于获得的65个KLK7蛋白全家族保守残基进一步用序列对比和结构对比进化分析进行验证。然后用Metapocket预测人KLK7蛋白质潜在配基结合点,结合之前获得的61个KLK7蛋白全家族保守残基进行潜在的抑制剂结合点分析,Asp104和Arg123是潜在的特异抑制剂结合点。其中Asp204和Ile30之间的盐桥对蛋白质结构起到稳定作用,Arg123是KLK7的外结合点,为寻找KLK7特异性抑制剂奠定了理论基础。  相似文献   

5.
激肽释放酶(Kallikrein,KLK)是丝氨酸蛋白酶家族的一员,多种KLK,尤其是KLK7在人类表皮中大量表达,为维持皮肤的正常生理活动发挥着重要作用。研究表明,特应性皮炎(atopic dermatitis,AD)作为一种与遗传有密切关系的炎性皮肤类疾病,与表皮中KLK7的活性的增加有着紧密的联系。特应性皮炎目前尚无根治的办法,KLK7是一种潜在的治疗特应性皮炎的药物靶标,因此研发KLK7的抑制剂将有助于为特应性皮炎等炎性皮肤病的临床治疗提供新的思路。  相似文献   

6.
DNA甲基化失调引起基因表达异常是表观遗传学的一个显著特点。目前已知,由DNA甲基转移酶(DNA methyltransferases,DMNTs)催化DNA甲基化,其酶基因突变或表达异常引起DNA甲基化水平的改变。近期研究发现了一种DNA去甲基化酶--TET(Ten-Eleventranslocation)家族DNA羟化酶,能通过多种途径催化5-甲基胞嘧啶(5.methylcytosine,5-mC)去甲基化,从而调控DNA基化的平衡。5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5-hmC)作为DNA去甲基化多重步骤中重要的中间产物,其水平在肿瘤的发生和发展时期发生显著变化。该文从TET家族蛋白展开,介绍TET蛋白的结构、功能及作用机制以及多种人类肿瘤中丁E丁家族基因与5-hmC水平的相关性及其对肿瘤发生发展、诊断预后等临床意义的研究进展。  相似文献   

7.
人X染色体含有一个黑色素瘤抗原基因亚家族   总被引:5,自引:0,他引:5  
肿瘤相关基因的研究是肿瘤基因形成学说的核心内容。肿瘤相关基因家族的研究则是其中的重点和难点,从4-6月孕龄人胎肝cDNA文库中克隆到一个黑色素瘤抗原基因亚家族,称为MAGE-D亚家族,其成员包括3个直系同源体(人MAGE-D1、大鼠SNERG-1和小鼠DLXIN-1)和2个旁系同源体(人MAGE-D和人KIAA1114)。该家族的3个人类成员均定位于染色体Xp11.21-p11.23,同时具有独特的基因组结构。分子进化树分析表明,该家族与已知MAGE-A、-B和-C3个亚家族之间具有明显的进化上分歧。该亚家族的发现为研究肿瘤相关基因新功能提供了重要线索。  相似文献   

8.
富含丝氨酸和精氨酸的SR蛋白(serine/arginine-rich protein)是重要的剪接因子家族,广泛参与RNA加工过程,包括剪接、出核、稳定性及翻译。近年来的研究发现,SR蛋白家族成员大多在肿瘤组织中存在异常表达,有些SR蛋白甚至能够作为原癌基因,通过调控肿瘤相关基因的选择性剪接而参与细胞转化和肿瘤发生。本文综述了SR蛋白的不同成员在肿瘤发生中的作用及其调控肿瘤相关基因的机制,以期为相关肿瘤的研究与诊治提供新思路和新靶点。  相似文献   

9.
杨丽虹  黄晓俊  金安琴  陈平 《生物磁学》2011,(20):3988-3990
X-连锁性外胚层发育不良受体(X-linked ectodermal dysplasia receptor, XEDAR )基因位于人类染色体Xq12,编码的蛋白XEDAR作为新近分离出来的肿瘤坏死因子受体家族成员其功能主要涉及细胞增殖、参与细胞分化(胚胎的发育,表皮的分化)、调亡等。XEDAR已在多种肿瘤组织中研究,笔者就其基本概念及在肿瘤研究方面的进展进行综述。  相似文献   

10.
《生物磁学》2010,(21):I0003-I0003
细胞自噬与肿瘤之间的相互关系是各国科学家的研究热点,而自噬在肿瘤细胞中发挥何种作用却一直存在争议。北京大学基础医学院朱卫国教授课题组的研究发现,肿瘤抑制因子FoxO1(叉头蛋自家族1)是诱导细胞自噬的关键蛋白,其抗癌作用与其诱导自噬功能密切相关。近日,《自然一细胞生物学》(Nature Cell Biology)杂志刊登了这一研究成果。  相似文献   

11.
Introduction: Kallikrein-related peptidases (KLKs) are a family of serine peptidases that are deregulated in numerous pathological conditions, with a multitude of KLK-mediated functional roles implicated in the progression of cancer. Advances in multidimensional mass spectrometry (MS)-based proteomics have facilitated the quantitative measurement of deregulated KLK expression in cancer, identifying certain KLKs, as well as their substrates, as potential cancer biomarkers.

Areas covered: In this review, we discuss how these approaches have been utilized for KLK biomarker discovery and unbiased substrate determination in complex protein pools that mimic the in vivo extracellular microenvironment.

Expert commentary: Although a limited number of studies have been performed, the quantity of information generated has greatly improved our understanding of the functional roles of KLKs in cancer progression. In addition, these data suggest additional means through which deregulated KLK expression may be targeted in cancer treatment, highlighting the potential therapeutic value of these state-of-the-art MS-based studies.  相似文献   


12.
Hepatocyte growth factor activator (HGFA) is a serine protease and a potent activator of prohepatocyte growth factor/scatter factor (pro-HGF/SF), a multifunctional growth factor that is critically involved in tissue morphogenesis, regeneration, and tumor progression. HGFA circulates as a zymogen (pro-HGFA) and is activated in response to tissue injury. Although thrombin is considered to be an activator of pro-HGFA, alternative pro-HGFA activation pathways in tumor microenvironments remain to be identified. In this study, we examined the effects of kallikrein 1-related peptidases (KLKs), a family of extracellular serine proteases, on the activation of pro-HGFA. Among the KLKs examined (KLK2, KLK3, KLK4 and KLK5), we identified KLK4 and KLK5 as novel activators of pro-HGFA. Using N-terminal sequencing, the cleavage site was identified as the normal processing site, Arg407-Ile408. The activation of pro-HGFA by KLK5 required a negatively charged substance such as dextran sulfate, whereas KLK4 could process pro-HGFA without dextran sulfate. KLK5 showed more efficient pro-HGFA processing than KLK4, and was expressed in 50% (13/25) of the tumor cell lines examined. HGFA processed by these KLKs efficiently activated pro-HGF/SF, and led to cellular scattering and invasion in vitro. The activities of both KLK4 and KLK5 were strongly inhibited by HGFA inhibitor type 1, an integral membrane Kunitz-type serine protease inhibitor that inhibits HGFA and other pro-HGF/SF-activating proteases. These data suggest that KLK4 and KLK5 mediate HGFA-induced activation of pro-HGF/SF within tumor tissue, which may thereafter trigger a series of events leading to tumor progression via the MET receptor.  相似文献   

13.
Kallikrein-related peptidases constitute a single family of 15 (chymo)trypsin-like proteases (KLK1–15) with pleiotropic physiological roles. Aberrant regulation of KLKs has been associated with diverse diseases such as hypertension, renal dysfunction, skin disorders, inflammation, neurodegeneration, and cancer. Recent studies suggested that coordinated activation and regulation of KLK activity are achieved via a complex network of interactions referred to as the “KLK activome.” However, it remains to be validated whether these hypothetical KLK activation cascade pathways are operative in vivo. In addition, KLKs have emerged as versatile signaling molecules. In summary, KLKs represent attractive biomarkers for clinical applications and potential therapeutic targets for common human pathologies.  相似文献   

14.
The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs.  相似文献   

15.
16.
The human kallikrein (KLK)-related peptidases are the largest family of serine peptidases, comprising 15 members (KLK1-15) and with the majority (KLK4-15) being identified only within the last decade. Members of this family are associated with important diseased states (including cancer, inflammation, and neurodegeneration) and have been utilized or proposed as clinically important biomarkers or therapeutic targets of interest. All human KLKs are synthesized as prepro-forms that are proteolytically processed to secreted pro-forms via the removal of an amino-terminal secretion signal peptide. The secreted inactive pro-KLKs are then activated extracellularly to mature peptidases by specific proteolytic release of their amino-terminal propeptide. Although a key step in the regulation of KLK function, details regarding the activation of the human pro-KLKs (i.e. the KLK "activome") are unknown, to a significant extent, but have been postulated to involve "activation cascades" with other KLKs and endopeptidases. To characterize more completely the KLK activome, we have expressed from Escherichia coli individual KLK propeptides fused to the amino terminus of a soluble carrier protein. The ability of 12 different mature KLKs to process the 15 different pro-KLK peptide sequences has been determined. Various autolytic and cross-activation relationships identified using this system have subsequently been characterized using recombinant pro-KLK proteins. The results demonstrate the potential for extensive KLK activation cascades and, when combined with available data for the tissue-specific expression of the KLK family, permit the construction of specific regulatory cascades. One such tissue-specific cascade is proposed for the central nervous system.  相似文献   

17.
Human tissue kallikrein-related peptidases (KLKs) are 15 hormonally regulated genes on chromosome 19q13.4 encoding secreted serine proteases. Many KLKs are expressed throughout the female reproductive system and found in cervico-vaginal fluid (CVF). Immunohistochemistry was performed to determine KLK localization in the female reproductive system (fallopian tube, endometrium, cervix and vagina tissues). KLK levels were measured in CVF and saliva over the menstrual cycle to study whether KLKs are regulated by hormonal changes during the cycle. In vitro cleavage analysis was performed to establish whether KLKs may play a role in vaginal epithelial desquamation, mucus remodeling or processing of antimicrobial proteins. KLKs were localized in the glandular epithelium of the fallopian tubes and endometrium, the cervical mucus-secreting epithelium and vaginal stratified squamous epithelium. KLK levels peaked in CVF and saliva after ovulation. In vitro cleavage analysis confirmed KLKs 5 and 12 as capable of digesting desmoglein and desmocollin adhesion proteins and cervical mucin proteins 4 and 5B. KLK5 can digest defensin-1alpha, suggesting it may aid in cervico-vaginal host defense. We provide evidence of potential physiological roles for KLKs in cervico-vaginal physiology: in desquamation of vaginal epithelial cells, remodeling of cervical mucus and processing of antimicrobial proteins.  相似文献   

18.
Tissue kallikrein (KLK1) and kallikrein-related peptidases (KLK2-15) comprise a family of 15 highly conserved secreted serine proteases with similar structural characteristics and a wide spectrum of functional properties. Both gene expression and protein activity of KLKs are rigorously controlled at various levels via diverse mechanisms, including extensive steroid hormone regulation, to exert their broad physiological role. Nevertheless, deregulated expression, secretion, and function of KLK family members has been observed in several pathological conditions and, particularly, in endocrine-related human malignancies, including those of the prostate, breast, and ovary. The cancer-related abnormal activity of KLKs upon substrates such as growth factors, cell adhesion molecules, cell surface receptors, and extracellular matrix proteins facilitate both tumorigenesis and disease progression to the advanced stages. The well-documented relationship between KLK status and the clinical outcome of cancer patients has led to their identification as promising diagnostic, prognostic, and treatment response monitoring biomarkers for these complex disease entities. The main objective of this review is to summarize the existing knowledge concerning the role of KLKs in prostate, breast, and ovarian cancers and to highlight their continually evolving biomarker capabilities that can provide significant benefits for the management of cancer patients.  相似文献   

19.
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications.  相似文献   

20.
Human kallikrein 1-related peptidases (KLKs) form a subfamily of 15 extracellular (chymo)tryptic-like serine proteases. KLKs 4, 5, 13 and 14 display altered expression/activity in diverse pathological conditions, including cancer. However, their distinct (patho)physiological roles remain largely uncharacterized. As a step toward distinguishing their proteolytic functions, we attempt to define their primary and extended substrate specificities and identify candidate biological targets. Heterologously expressed KLKs 4, 5, 13 and 14 were screened against fluorogenic 7-amino-4-carbamoylmethylcoumarin positional scanning-synthetic combinatorial libraries with amino acid diversity at the P1-P4 positions. Our results indicate that these KLKs share a P1 preference for Arg. However, each KLK exhibited distinct P2-P4 specificities, attributable to structural variations in their surface loops. The preferred P4-P1 substrate recognition motifs based on optimal subsite occupancy were as follows: VI-QSAV-QL-R for KLK4; YFWGPV-RK-NSFAM-R for KLK5; VY-R-LFM-R for KLK13; and YW-KRSAM-HNSPA-R for KLK14. Protein database queries using these motifs yielded many extracellular targets, some of which represent plausible KLK substrates. For instance, cathelicidin, urokinase-type plasminogen activator, laminin and transmembrane protease serine 3 were retrieved as novel putative substrates for KLK4, 5, 13 and 14, respectively. Our findings may facilitate studies on the role of KLKs in (patho)physiology and can be used in the development of selective KLK inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号