共查询到17条相似文献,搜索用时 46 毫秒
1.
二道白河河岸带植物群落最小面积与物种丰富度 总被引:16,自引:3,他引:16
河岸带是森林小流域单元的重要组成部分之一。由于河水的影响和边缘效应等因素的综合作用,河岸带植物群落与远离河岸带的森林群落在组成,结构和分布格局等方面存在较大差异,其如落最小面积也不同。本文对长白山原始阔叶红松林河岸带植物群落最小面积和物种丰富度进行了探讨。结果表明,河岸带植物群落的最小面积均小于远离河岸带的森林群落的最小面积,在河岸带,阔叶红松林群落的60,80和90%植物在时的平均最小面积分别约为80,180和320m^2;而远离河岸带的森林内部,相应的平均最小面积分别为260,380和480m^2左右。河岸带植物群落的物种丰富度普遍高于森林群落。 相似文献
2.
3.
种-面积关系研究是了解植物群落结构的重要途径,是群落生态学的基本问题。不同的研究方法对种-面积关系影响很大。利用黑龙江省小兴安岭两个10.4 hm2样地和5个1.0 hm2样地的调查数据,采用移动窗口法确定各样地的最小取样面积,避免了巢式取样法及随机样方法的不足。并采用4种种-面积关系模型进行拟合,评价各关系模型的适合度。在此基础上,基于最小面积进行模拟随机取样,探讨取样大小对物种数估计精度的影响。研究结果表明:由于拟合曲线模型的适用性及曲线外推可靠性问题的存在,采用拟合曲线的方法所估计的最小面积与实际值偏差较大。实际调查得到的各样地最小面积40 m×40 m—45 m×45 m,说明小兴安岭地区阔叶红松林群落所需的最小面积基本一致,但各样地群落结构的差异却在对取样数量的要求上体现出来。其中丰林与大亮子河样地物种数分布相对均匀,所需最小样方数量较少;而方正与胜山样地物种数分布异质性较大,差异的机理还有待于进一步研究。 相似文献
4.
太白山几类植物群落灌木及草本层的最小取样面积研究 总被引:1,自引:0,他引:1
采用2条非饱和与2条饱和曲线方程对太白山7种类型植物群落(Ⅰ.锐齿栎林、Ⅱ.铁橡树林、Ⅲ.红桦林、Ⅳ.巴山冷杉-牛皮桦林、Ⅴ.巴山冷杉林、Ⅵ.太白红杉林和Ⅶ.头花杜鹃-大毛状薹草灌草丛)灌木及草本层拟合的种-面积曲线,计算研究精度要求分别为60%、70%、80%、90%时各群落各层的最小取样面积,并进行分析比较.结果表明,不同群落灌木及草本层最小取样面积均随研究精度增高而增大,群落Ⅰ~Ⅶ灌木层的取样面积分别为96、35、73、63、75、1701、8 m2时,草本层为91、91、57、59、71、657、m2时,可满足精度80%以下的研究要求;灌木层的取样面积为163、62、122、104、120、296、35 m2时,草本层为150、151、109、110、126、1192、9 m2时,可满足精度90%的研究要求.方差分析表明,不同群落灌木及草本层最小取样面积存在差异,有些差异达显著水平(P<0.05).因此,在野外调查时应根据研究精度要求和群落类型合理设置最小取样面积. 相似文献
5.
为了解鄱阳湖湿地草洲植物群落的结构,对其3种典型草洲植物群落种-面积关系进行了研究。采用巢式样方法调查植物物种数量,并用3种非饱和曲线拟合种-面积方程。结果表明,基于实测数据,3个草洲物种数随着取样面积的增加先快速增加后趋于平稳;群落最小取样面积均为30 m~2。幂函数模型对3个草洲群落的种-面积关系拟合效果均为最佳,3个草洲群落的RSE分别为0.35、0.35和0.56,AAD分别为0.23、0.17和0.35,AARD分别为0.06、0.02和0.07,而指数模型、Fisher模型的拟合效果一般。指数模型计算得到的不同比例因子下3个草洲最小取样面积与实际情况最为吻合。这为鄱阳湖区进行植物群落数据采集的样方设置提供了理论参考。 相似文献
6.
本文选择了 1 0条曲线作为种 -面积曲线的拟合模型 ,它们分别是S=b a A (1 )S=b aln A (2 )S=(b aln A) c (3)S=aln(A 1 ) (4)S=aln(b A 1 ) (5)S=a Ab (6)S=a A/ (1 b A) (7)S=c/ (1 ae-b A ) (8)S=c - ae-b A (9)S=a(1 - e-b A ) (1 0 )对其中的 7个非线性模型给出了参数初值的计算方法 ,并用 Gauss- Newton或 Marquardt方法计算非线性最优解。又选择了剩余标准差 (RSE)、相关指数 (CRI)、偏差绝对值的平均值 (AAD)和相对偏差绝对值的平均值 (AARD)作为模型拟合优劣的 4个评价指标。研究结果表明 :1 ) 7个非线性模型中参数初值的计算方法是可行的。从 4个评价指标来看 ,它们的非线性最小二乘解都明显优于线性最小二乘解 ;2 ) 1 0个模型的拟合效果都相当好 ,对 5个样地及其各层拟合的共 2 0 0个 CRI中有 71 .5%大于 0 .9,89%大于0 .8,其中曲线 (3)和 (9)最好 ,其次是 (5)、(6)、(2 ) ,(1 )和 (1 0 )最差 ;3)秩相关分析表明 ,3个评价指标RSE、AAD和 AARD相互之间存在极强的正秩相关 ,因此在本研究中 ,它们的评价结果具很强的一致性。 相似文献
7.
根据群落物种数目估计的结果,并利用10条种-面积曲线对东灵山地区几个类型植物群落的临界抽样面积进行了研究,并与其它几个群落最小面积的确定方法进行了比较。结果发现用各种方法确定的临界抽样面积是不同的,并且各种方法受种-面积曲线不同形式影响的程度也不同,但方法1受的影响最小,其意义比较直观、明确,由它得到的结果也比较可靠。对5个群落来说,要抽到这5个群落的乔、灌、草及整个群落60%的种所需的临界抽样面积分别为325~525m2(13~21个5m×5m的样方)、100~500m2(4~20个样方)、175~275m2(7~11个样方)和225~350m2(9~14个样方)。 相似文献
8.
生物群落的种-面积关系 总被引:14,自引:2,他引:12
种—面积关系主要探讨物种数量随面积扩大而变化的规律, 它联系不同尺度的生物多样性, 是生物多样性尺度转换的重要依据。利用种—面积关系可以估算群落或区域的物种数量、评价区域生物多样性的丧失。由于构建方式、尺度效应以及区域差异, 种—面积关系的具体形式及其普适性还存在争议。本文主要从构建、尺度效应、区域分异以及与种—多度分布的联系等方面综述种—面积关系的主要进展, 并探讨它在不同方面的适用性。最后给出了利用基于组合样方系列构建的种—面积关系来估算秦岭山地物种数的实例, 结果表明估算精度良好。 相似文献
9.
以陕西纸房沟流域为研究单元,于2006-2008年,对该流域恢复区8种林分进行系统调查,运用不同模型分析了各林分节肢动物群落种-面积、多度关系.不同林分节肢动物群落种-面积关系符合S=CAm,种类数随着面积增加接近一个常数,并得出相应最小调查面积,其大小排序为:自然灌木林>自然乔木林>杨树 刺槐混交林>柠条-沙棘混交林>柠条林>沙棘林>刺槐林>柳树林,说明林分类型越复杂,需要调查节肢动物群落的最小面积越大.在抽样调查基础上建立了不同林分节肢动物种-多度模型,天然恢复林地节肢动物以对数正态模型(LN)的拟合效果最佳,表明群落中个体数量居中的节肢动物种类较多,稀有种和富有种种类较少,优势种不明显;在混交林和纯林中,节肢动物群落以对数柯西模型(LC)的拟合效果最佳,与天然恢复林相比,其节肢动物群落中稀有种和富有种种类较多,优势种比较突出. 相似文献
10.
用种面积曲线和群落系数面积曲线的方法对宜昌梅子垭地区一种主要植物群落类型的最小面积进行了研究。结果表明,对所研究的植被类型,样地布置为 10m ×10m 及20m ×20m 可满足不同研究精度的要求。群落系统面积曲线和种面积曲线一样,比较直观。虽然取样调查时工作量稍大,但运用群落系数面积曲线的方法可更多地包含种类组成及群落结构随面积而变化的信息,所确定的最小面积也能够真实地反映整个群落种类组成及结构的特征。 相似文献
11.
种—面积关系常用于确定自然植被调查的取样面积, 但其在城市植被中的应用依然少见报道。基于重庆市3个行政区共54个样地, 采用巢式样方法和随机样方法同时调查样地所有植物, 揭示城市植物种—面积关系, 分析城市植物调查的取样面积推算方法, 并通过遗漏曲线揭示两种调查方法遗漏植物的规律。研究结果表明: 巢式样方法下, 种—面积曲线符合Logistic函数和Allometrica1函数的变化规律(R2>0.90), 相关公式可用于推算最小取样面积, 且取样精度越高则所需最小取样面积增加量越大。公园及居住区绿地, 调查到植物种数的比例从60%逐渐增加到90%时, 所需最小取样面积的平均值从17.7 m2逐渐增加到162.0 m2。在巢式样方法下, 取样面积从100 m2增加到625 m2, 公园和居住区绿地中遗漏的植物(未被调查到的植物), 种数比例分别从15.17%和13.98%降低至1.42%和0.42%。目前城市植物调查中常用的100 m2样方面积下, 公园和居住区中遗漏的物种中, 分别有78.1%和81.8%为频率3.7%的低频物种。公园和居住区绿地中, 遗漏植物的频率—种数关系均符合Hyperb1函数曲线(R2>0.95)。草本植物调查中常用的随机样方法(3个1 m × 1 m样方), 遗漏草本植物的种数平均为公园草本植物的41.44%、居住区草本植物的49.58%, 其中A级频率物种分别占公园及居住区的93.48%和93.22%。随机样方法下, 公园和居住区绿地遗漏草本植物的频率—种数关系符合Logistic函数曲线(R2>0.94)。研究结果和方法可为城市植物多样性调查取样方法的确定和评价提供一定的理论参考。 相似文献
12.
东北地区阔叶红松林的群落结构及其物种多样性比较 总被引:20,自引:1,他引:19
利用在长白山、小兴安岭、张广才岭设置的 9个样方的调查资料 ,对我国东北地区阔叶红松林的群落结构及其物种多样性进行了对比分析。结果表明 ,在 9个样方共记录到物种 137种 ,隶属于 5 3科 98属。利用TWINSPAN将 9个样方分为 3组 4个类型 ;同时 ,TWINSPAN还将 2 7个乔木种划分为 7个群落类型。不同样方的群落结构指标相差较大 ,这与群落所处的环境、地理位置以及年龄有关。平均胸径与立木密度之间呈幂函数关系 ,后者随前者增加而递减。群落结构特征之间存在显著的关系 ,但与物种丰富度的关系不显著。对于多样性(H′)和均匀度 (E)来说 ,一般有草本层 >灌木层 >乔木层的趋势 ;而在各自的取样面积内 ,物种丰富度 (S)差异不大。对所有调查区域内的植物而言 ,长白山的阔叶红松林在三地中拥有最高的丰富度 ,并且这主要来源于草本层和灌木层的贡献 ,乔木层的丰富度在三地并没有明显差异。 相似文献
13.
研究采用3种饱和曲线方程拟合出的群落种-面积曲线,对岷江上游干旱河谷灌丛群落的最小面积进行研究,取比例因子P分别为0.6、0.7、0.8、0.9,求得灌丛群落的最小面积或临界取样面积。研究结果表明:当ρ取0.6、0.7、0.8时,阴、阳坡各海拔梯度样地群落最小面积均小于或略大于100m^2,样方可设置为10m×10m,即样地面积为100m^2,可以满足精度60%~80%的研究要求。当ρ取0.9时,阴、阳坡各海拔梯度样地群落最小面积均小于200m^2,样方可设置为10m×20m,即样地面积为200m^2,可以满足精度90%的研究要求;群落最小面积呈现出随海拔梯度的升高而逐渐增大的趋势,且最小面积所含物种数也随之增加;在相对应的海拔高度上,海拔2000m以下群落最小面积及所含物种数阴坡明显大于阳坡,而在2200m左右的高海拔则是阴坡与阳坡相接近;对于岷江上游干旱河谷灌丛群落类型而言,由方程(1)、(2)拟合所得的种一面积曲线较好于由方程(3)拟合所得的种.面积曲线。 相似文献
14.
The minimum sampling areas (MSAs) for the shrub communities in the arid valley in the upper reach of the Minjiang River, China, were studied by fitting community species-area relationships using 3 types of equations. The MSAs were determined at the proportional factor (ρ) 0.6, 0.7, 0.8 and 0.9. The proportional factors represent the proportion of the number of species within a sampling plot in the total number of species. The MSAs of the shrub communities at different elevations and on different slope faces for ρ = 0.6, 0.7 and 0.8 were all around 100 m2. Hence, the MSAs could be set to be 100 m2 (10 m × 10 m) at 60%–80% precision levels. For ρ = 0.9, that is, for a 90% precision level, the MSAs were less than 200 m2 (10 m × 20 m). The MSAs and species richness increased gradually with the rising elevation. At the elevation below 2000 m, the MSAs and species richness on the north-facing slope were larger than those on the south-facing slope. However, at the elevation around 2200 m, there was no difference amongst different facing slopes. For the shrub communities in the arid valley in the upper reach of the Minjiang River, the species-area curves by fitting the first two equations are better than that by fitting the third equation. 相似文献
15.
The minimum sampling areas (MSAs) for the shrub communities in the arid valley in the upper reach of the Minjiang River, China, were studied by fitting community species-area relationships using 3 types of equations. The MSAs were determined at the proportional factor (ρ) 0.6, 0.7, 0.8 and 0.9. The proportional factors represent the proportion of the number of species within a sampling plot in the total number of species. The MSAs of the shrub communities at different elevations and on different slope faces for ρ = 0.6, 0.7 and 0.8 were all around 100 m2. Hence, the MSAs could be set to be 100 m2 (10 m × 10 m) at 60%–80% precision levels. For ρ = 0.9, that is, for a 90% precision level, the MSAs were less than 200 m2 (10 m × 20 m). The MSAs and species richness increased gradually with the rising elevation. At the elevation below 2000 m, the MSAs and species richness on the north-facing slope were larger than those on the south-facing slope. However, at the elevation around 2200 m, there was no difference amongst different facing slopes. For the shrub communities in the arid valley in the upper reach of the Minjiang River, the species-area curves by fitting the first two equations are better than that by fitting the third equation. 相似文献
16.
种-面积关系是群落生态学的核心问题之一,是生物多样性尺度转换的重要依据。利用吉林蛟河阔叶红松林30 hm~2的样地数据,采用随机取样与巢式取样方法,分别在10、20、30 hm~2尺度上建立对数模型(Logarithmic function)、幂函数模型(Power function)和逻辑斯蒂模型(Logistic function)拟合局域种-面积关系,并利用赤池信息准则(AIC)进行拟合结果优度检验。结果表明,取样方法对种-面积关系的构建有显著影响,随机取样优于巢式取样。种-面积关系的构建与尺度(取样上限)密切相关:在小尺度上(10 hm~2),对数模型与逻辑斯蒂模型拟合效果优于幂函数模型;在中尺度和大尺度上(20、30 hm~2),相对于对数模型和幂函数模型,逻辑斯蒂模型能更好地拟合阔叶红松林的种-面积关系。据AIC值可知,随机取样下的逻辑斯蒂模型拟合效果最好,是拟合30 hm~2阔叶红松林样地种-面积关系的最适模型。因此研究时需要根据区域森林群落的实际情况选择种-面积模型。 相似文献
17.
通过对纸房沟流域不同植被恢复区昆虫进行调查,结果表明:昆虫种类数以天然灌木林最高,混交林次之,单纯林分较低,个体数量以柠条林昆虫数量最高,其次为混交林和沙棘林,天然灌木林变化幅度最小。各植被昆虫种类和数量季节变化符合y=ax3 bx2 cx d函数变化规律。从特征指数来分析:昆虫群落多样性指数5~9月份大小次序均为天然灌木林>混交林>单纯林分,均匀度以单纯林和混交林的昆虫群落变化幅度较大,天然灌木林变化幅度最小。群落的优势度与均匀度值的变化呈相反趋势。主分量分析表明:植物类型不同的昆虫群落,其主导因素和时间格局不同,且结构越复杂,主导因素和时间格局越明显;相反,则主导因素和时间格局分化不明显;通过排序植食性昆虫、捕食性昆虫、寄生性昆虫在各植被昆虫群落变化的不同时期占主导因素。 相似文献