首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
实验室条件下,考察了在发酵过程中不同氮源对小球藻的生物量和油脂积累的影响,确定了小球藻的最佳氮源;并对比分析了含氮培养与缺氮培养的生物量、油脂含量、氮消耗量、生物量氮消耗比率和油脂氮消耗比率的不同。结果表明:小球藻在1.6 g/L Na NO3时获得最大生物量,为562.2 mg/L,在0.8 g/L Na NO3时获得最大相对油脂含量为12.01%;以油脂含量为考察指标时,培养小球藻的最佳氮源为0.8 g/L Na NO3;缺氮培养时,最大油脂含量为13.49%,比含氮培养高约15%;含氮培养时,最高生物量为626.3 mg/L,比缺氮培养高约1.9倍。氮源对生物量,相对油脂含量,生物量氮消耗比率和油脂氮消耗比率具有明显的影响。藉此,提出了通过改变培养方式,达到调控小球藻细胞内生理代谢组分的可行性。  相似文献   

2.
杨予静  刘世荣  陈琳  王晖  卢立华 《生态学报》2018,38(13):4770-4778
为研究气候变化背景下降水格局变化对森林生长和碳固持的影响,2012年在我国南亚热带地区选择广泛分布的马尾松(Pinus massoniana)人工林为研究对象,分别设置3块20 m×20 m的模拟降雨减少50%和对照样地,每个样地随机设置5个距地面40 cm的1 m×1 m的凋落物收集框,2016年1—12月每隔1月收集各样地林冠层凋落物,比较研究减水处理对凋落物组分产量和基本化学性质的短期影响。结果表明:马尾松人工林针叶凋落物量及其所占比例显著高于其他凋落物组分(P0.05),减雨处理对马尾松人工林凋落叶和总量无显著影响(P0.05)。与对照相比,减雨处理分别增加凋落针叶含碳量和凋落果含氮量27.4 g/kg和5.1 g/kg,以及凋落针叶的木质素含量、阔叶纤维素含量和皮半纤维素含量3.9%、5.2%和4.0%(P0.05),但显著降低凋落皮碳、纤维素含量和凋落果的碳氮比(P0.05)。凋落物N、P含量具有协同性,含碳量与木质素含量显著正相关(P0.05)。模拟降雨减少处理初期并未显著改变南亚热带马尾松人工林总凋落物量,但增加了凋落针叶的木质素含量和含碳量。本研究预示短期穿透雨减少可能降低南亚热带马尾松人工林凋落物的分解能力,由此降低马尾松人工林土壤中凋落物源性碳的输入量。  相似文献   

3.
为了探究油茶蒲提取物中对前列腺增生具有抑制作用的天然活性化合物,本研究采用高效制备液相(preparative HPLC)从油茶蒲聚酰胺组分中分离得到抑制前列腺增生(benign prostatic hyperplasia,BPH)的活性化合物。运用质谱(Mass Spectrometer,MS)和核磁共振技术(Nuclear magnetic resonance,NMR)对其化学结构进行鉴定,并采用MTT法检测各化合物对人前列腺增生细胞BPH-1增殖的抑制作用。结果表明:纯化组分F1、F2和F3对BPH-1细胞增殖均具有较强抑制作用,低剂量(50μg/m L)时抑制率分别为30.31%、43.26%和29.00%,抑制效果均优于阳性对照非那雄胺(26.50%)。经化学结构鉴定确定F1、F2和F3分别为橡椀酸双内酯、3-O-没食子酰基-4,6-[(S)-六羟基联苯二酰基]-(α/β)-D-吡喃葡萄糖和3,4,6-三-O-没食子酰基-(α/β)-D-葡萄糖。本研究可为开发改善前列腺疾病的天然产物提供理论参考与物质基础。  相似文献   

4.
植物的叶表蜡层与昆虫的行为   总被引:2,自引:0,他引:2  
马文儒 《生物学通报》1993,28(10):12-13
在高等植物的叶表角质膜外覆盖着一层蜡质薄层。这一薄层由表皮细胞的分泌物沉积而成,被称为上表皮蜡层(epicuticular wax)或蜡被(waxcoating)。叶表蜡层是多种化合物的混合物,其组分复杂多样,有种的差异。但是脂肪族的蜡质成分却广泛地存在于植物界。蜡层的含量也因种属的不同有很大的差异。许多草本植物(如莴苣,菠菜、甜菜)的叶表蜡层仅为5~10μg/cm~2,而有些果类作物(如桃、梨、苹果)的叶表蜡层可达60~300μg/cm~2。叶表蜡层在维持植物体内水平衡、减少机械损伤、抵御霉菌病  相似文献   

5.
对川西高山树线红杉新鲜凋落物中有机组分于11月进行自然条件(对照)、加氮(2 g N·m-2)、增温(顶开式培养室)、加氮+增温4个处理的原位培养,并监测凋落物中有机组分的分解动态.结果表明: 在试验开始后4个月内,增温、加氮以及加氮+增温处理比对照显著促进了红杉凋落物中水溶性糖、水溶性酚和多酚的分解,但随着培养时间的延长,累积分解量的差异逐渐缩小.与对照相比,增温、加氮和增温+加氮处理均抑制红杉凋落物中CH2Cl2提取组分、酸溶碳水化合物、酸溶木质素和非酸溶木质素分解,其中增温处理抑制作用最强,加氮处理抑制效果最弱,增温+加氮处理介于二者之间;增温处理对非酸溶木质素和CH2Cl2提取组分的半分解周期延长1倍以上,热水溶组分的半分解周期延长50%以上.在原位培养条件下,红杉新鲜凋落物中水溶性糖、水溶性酚、多酚、酸溶碳水化合物、酸溶木质素是较容易分解的有机组分,半分解周期分别为182、159、127、154和190 d;热水溶组分、CH2Cl2提取组分和非酸溶木质素是较难分解的有机组分,半分解周期分别是209、302和318 d;尽管低温季节(11月至次年3月)极其寒冷,气温均低于0 ℃,常被认为是微生物活性最弱、有机物分解最慢的时期,但结果显示低温季节期间红杉凋落物各有机组分却分解最快.因此,氮沉降和升温将迟滞该区域高寒红杉林凋落物的分解.这将有利于高寒森林生态系统的土壤碳固持.  相似文献   

6.
本文以北山羊角为主要研究对象,利用傅里叶变换红外光谱仪、气相色谱仪和全自动氨基酸分析仪检测分析其红外光谱、脂肪酸和氨基酸成分。结果表明:北山羊角红外光谱主要体现角蛋白组分的特征峰,其中1 540 cm~(-1)、1 653 cm~(-1)、3 061cm~(-1)归属于角蛋白分子中酰胺类成分;1 454 cm~(-1)、2 875 cm~(-1)、2 963 cm~(-1)归属于角蛋白分子中脂类成分;北山羊角共检测出10种脂肪酸组分,主要成分包括棕榈酸、油酸、山俞酸,它们占脂肪酸总量的53.9%;17种氨基酸组分,总量为976.62 mg/g。  相似文献   

7.
房福金  肖金兰  王东 《生态学报》2023,43(7):2927-2937
氮(N)是陆地生态系统初级生产力的重要限制因子,大气N沉降的增加将会对植物的化学元素含量和生物量产生重要影响,进而影响凋落物的化学计量特征及其养分归还。高寒灌丛是陆地生态系统的重要组成部分,但有关N沉降对高寒灌丛凋落物尤其是凋落枝的化学元素和生物量的研究还较为缺乏,难以深入揭示N沉降对高寒灌丛土壤碳(C)和养分循环的影响机理。基于此,以青藏高原东部地区的优势高寒灌丛类型—窄叶鲜卑花(Sibiraea angustata(Rehd.) Hand.-Mazz.)灌丛为研究对象,连续4年人工模拟N沉降,分析了凋落枝C、N、磷(P)、木质素和纤维素化学计量特征及其归还量对不同N添加浓度(0、20、50、100 kg hm-2 a-1)的响应趋势。结果表明:(1)N添加对凋落枝C、N含量无显著性影响(P>0.05),而对P、木质素和纤维素含量有显著性影响(P<0.05),但不同年份间的影响趋势不一致;(2)4年的N添加并未改变凋落枝的C/N、N/P,但显著降低了凋落枝的木质素/N(第3年)、C/P(第1年和第4年)和C/N/P(第1年);(...  相似文献   

8.
刘丹  游郭虹  宋小艳  胡雷  柳杨  王长庭 《生态学报》2023,43(6):2378-2387
以川西北高寒草地为研究对象,采用随机区组设计,设置0、10、20、30、40、50、60 g/m2的过磷酸钙(P2O5,16%)施肥试验,分析土壤不同形态磷含量和有效磷(Olsen-P)含量变化特征,探究施磷对川西北高寒草地土壤磷形态及有效磷的影响。结果表明:(1)随施磷量增加,土壤总磷(TP)含量先增加后趋于平稳而Olsen-P含量减少。高水平(50、60 g/m2)施磷下氢氧化钠有机磷(NaOH-Po)及残留磷(Residual-P)是高寒草地主要的磷素累积形态,其含量显著高于不施磷处理;(2)树脂交换态磷(Resin-Pi)、碳酸氢钠无机磷(NaHCO3-Pi)、碳酸氢钠有机磷(NaHCO3-Po)和氢氧化钠无机磷(NaOH-Pi)含量随施磷量增加整体呈先增加后降低趋势,表层土壤30 g/m2磷肥用量下其值均为最高,分别为21.54、22.94、65.86、64.48 mg/kg。酸溶性无机磷(HCl-Pi)随施磷量增加整体呈下...  相似文献   

9.
对我国南海红树林底泥中分离的一株放线菌(No.H74-18)的发酵菌丝体采用95%乙醇提取,并对具有抗真菌活性的乙酸乙酯部位进行研究,通过硅胶开放柱色谱分离得到了一个结晶样品。通过制备型反相高效液相色谱分离,从此结晶样品中分离纯化出3个化合物,经NMR、MS等光谱学方法分别鉴定为抗霉素A1(1)、抗霉素A2a(2)、抗霉素A3(3),这些化合物都是抗霉素类化合物。采用LC-MS联用技术分析了此结晶样品中存在的抗霉素类的可能组份。  相似文献   

10.
以武夷岩茶当家茶树品种肉桂(Camellia sinensis ‘Rougui’)鲜叶制成的乌龙茶为试材,基于顶空固相微萃取法(HS-SPME)结合气相色谱-质谱联用技术(GC-MS),探讨武夷岩茶炭焙工艺对肉桂乌龙茶挥发性组分的影响。实验中共检测到样本挥发性成分443个,其中包括96个杂环化合物、81个酯类化合物、31个萜类化合物、42个芳香烃类化合物、55个酮类化合物、24个其他烃类化合物、35个醇类化合物、24个醛类化合物、15个酚类化合物、14个胺类化合物、10个酸类化合物、5个含氮化合物、3个含硫化合物等。经主成分分析及聚类分析显示,焙火工艺是影响乌龙茶挥发性成分含量的重要影响因子。随炭焙程度增加,不同类别物质中的多数挥发性成分含量随之显著升高,且以美拉德反应产物等具有茶叶烘炒香的吡嗪类、糠醛类衍生物、吡咯类等化合物最具代表性;同时,部分含量丰富且具有乌龙茶特殊花果香气的醇类、萜烯类物质如香叶醇、反式-橙花叔醇、植物醇、α-法尼烯等,及具清新花香的吲哚含量显著降低。然而,大多数挥发性差异代谢物随炭焙程度增加相对含量显著升高,并不代表茶叶中芳香物质总量增加。研究表明,乌龙茶精制烘焙过程中,香气物质的积累主要来自热作用下的美拉德反应及非酶促的降解和氧化,如黄酮苷类物质水解。  相似文献   

11.
An analysis of the bovine genome by Cs2SO4-Ag density gradient centrifugation   总被引:22,自引:0,他引:22  
Calf DNA preparations having molecular weights of 5 to 7 × 106 have been fractionated by preparative Cs2SO4—Ag+ density gradient centrifugation into a number of components. These may be divided into three groups: (1) the main DNA component (1.697 g/cm3; all densities quoted are those determined in CsCl density gradients), the 1.704 and 1.709 g/cm3 components form about 50, 25 and 10% of the genome, respectively; they are characterized by having symmetrical CsCl bands and melting curves, both of which have standard deviations close to those of bacterial DNAs of comparable molecular weight, and by their G + C contents being equal to 39, 48 and 54%, respectively; after heat-denaturation and reannealing, their buoyant densities in CsCl are greater than native DNA by 12, 10 and 3 mg/cm3, respectively. (2) The 1.705, 1.710, 1.714 and 1.723 g/cm3 components represent 4, 1.5, 7 and 1.5% of the DNA, respectively, and exhibit the properties of “satellite” DNAs; their CsCl bands and melting curves have standard deviations lower than those of bacterial DNAs; after heat-denaturation and reannealing, their buoyant densities are identical to native DNA, except for the 1.705 g/cm3 component, which remains heavier by 5 mg/cm3; in alkaline CsCl, only the 1.714 g/cm3 component shows a strand separation. (3) A number of minor components, forming 1% of the DNA, have been recognized, but they have not been investigated in detail; two of them (1.719 and 1.699 g/cm3) might correspond to ribosomal cistrons and mitochondrial DNA, respectively.  相似文献   

12.
Using linear sucrose gradients, particulates derived from pea (Pisum sativum L. cv. Alaska) epicotyls have been fractionated and examined for marker enzyme activity. The coincidence of three reputed plasma-membrane markers [cellulase (EC 3.2.1.4), K+-stimulated Mg2+-ATPase, and glucan synthetase] at the same position on sucrose density gradients, in combination with electron microscopic evidence reported by G. Shore and G. Maclachlan (J. Cell Biol. 64, 557–571; 1975), indicates that plasma membrane of pea epicotyl has a buoyant density of about 1.13 g/cm3. This density disagrees with those usually reported for plant plasma membranes and also with recent reports for Pisum. It is, however, shown to be distinct from the equilibrium densities of enzymic markers for particulate components derived from Pisum endoplasmic reticulum (1.10–1.11 g/cm3), Golgi (1.12 g/cm3) and mitochondria (1.18 g/cm3). Furthermore, other recent literature indicates that the 1.13 g/cm3 buoyant density may be characteristic of the plasma membrane of many members of the Leguminosae. Our data indicate that the conditions of differential centrifugation (time, centrifugal force), coupled with the amount of protein utilized, affect the resolution and interpretation of profiles of marker enzymes on sucrose gradients (e.g. glucan synthetase and K+-stimulated Mg2+-ATPase were sometimes found to be associated not only with particles of 1.13 g/cm3 density, but with particles of higher densities as well). Particulate cellulase was found to be associated only with particles with equilibrium densities of about 1.13 g/cm3. Cellulase thus proved to be the most useful marker for establishing a differential centrifugation regime which would permit examination of the 1.13 g/cm3 particulate components with minimal contamination by particles of higher densities.  相似文献   

13.
Ouden  Jan den 《Plant and Soil》1997,197(2):209-217
We investigated early root development of Pinus sylvestris seedlings in relation to bulk density and natural particle layering in an ectorganic soil layer from a bracken (Pteridium aquilinum) stand. Responses in root development to two levels of bulk density (0.07 and 0.15 g/cm3) in mixed bracken substrate were compared with effects in peat of similar bulk densities, and in sand of three different bulk densities (0.37, 0.52, and 0.67 g/cm3). The effect on root growth of the natural horizontal layering of the organic particles was examined by comparing intact with mixed ectorganic bracken soil profiles of similar bulk densities (resp. 0.09 and 0.07 g/cm3).Root length growth was significantly reduced in the organic and sandy substrates of high bulk density. Root diameter was not affected by bulk density in the organic substrate, but increased with higher bulk density in sand. Preservation of horizontal layering in the intact ectorganic profile significantly reduced root length compared with mixed substrate of similar bulk density.Roots growing in high bulk density, and intact, organic substrate showed increased twisting, which resulted in a smaller depth reached by the root relative to total root length produced. In sand, root twisting did not change with increased bulk density. It is suggested that roots growing through organic substrate follow a path of least resistance. This implies that organic particle size and orientation are more important in determining root development than bulk density.This study points out that the natural layering of organic particles presents another constraint on the establishment of plant species in sites with a well-developed ectorganic soil layer. Disturbance of this layer may therefore enhance establishment of seedlings by reducing the mechanical resistance of the ectorganic soil profile to developing seedling roots.  相似文献   

14.
Calf thymus DNA containing satellite components of various densities was used as a model to study the effect of netropsin on the density of DNA in a CsCl gradient. The binding of netropsin resulted in a decrease in density which depended upon the quantity of netropsin added and on the average composition of the DNA. Differences in density of DNA components were higher in CsCl - netropsin gradients than in simple CsCl gradients. By use of netropsin a main band and four satellite bands could be differentiated in calf thymus DNA. Satellite DNA's were isolated using preparative CsCl - netropsin gradient centrifugation and were characterised by density and homogeneity in native and in reassociated state. Two of the satellite components, with densities of 1.722 and 1.714 g/cm3, are probably of homogenous sequence, the other two components of densities 1.709 and 1.705 g/cm3 appear to be heterogeneous.  相似文献   

15.
A new approach is suggested for studying changes in the interactions of protein with DNA in the cells. Measurements of the buoyant density of chromatin were performed in somatic cells and in cells undergoing meiosis in fish. During the process of spermatogenesis some of the somatic histones on the DNA are replaced by a new class of proteins; consequently, the mature sperm contains a unique type of protein having a low mol. wt and a high proportion of arginine.The chromatin obtained from mature sperm is composed of a single component with a density of 1.48–1.49 g/cm3 as measured by CsCl equilibrium sedimentation. On the other hand, somatic cells contain chromatin with lower densities. Chromatin obtained from erythrocytes contains a single component with a density of 1.41–1.42 g/cm3 while liver chromatin shows two components; a main component with a density of 1.45–1.46 and a more heterogeneous component with a lighter density (1.32–1.35). There is a correlation between the buoyant density of the chromatin, the type of its basic proteins and the level of biosynthetic activity in the cells.  相似文献   

16.
Density Gradient Centrifugation of Rubella Virus   总被引:1,自引:0,他引:1       下载免费PDF全文
Rubella virus was centrifuged in sucrose density gradients. One of two densities could be ascribed to the virus, depending upon the suspending medium used. The virus was found at a density of 1.16 g/cm3 after centrifugation for 18 hr in sucrose gradients prepared in distilled water. By contrast, when the sucrose gradients were prepared in tris(hydroxymethyl)aminomethane (Tris)buffer containing ethylenediaminetetraacetic acid (EDTA), the virus was found at a density of 1.18 g/cm3 after 18 hr of centrifugation. The virus banded at this higher density after only 2 hr of centrifugation when pretreated by overnight incubation in the Tris-EDTA buffer. A kinetic study showed that, in sucrose gradients containing this buffer, the virus gradually migrated as a single peak of infectivity from a density of 1.16 g/cm3 after 2 hr of centrifugation to the higher 1.18 g/cm3 density after 18 hr. The density change was shown to be reversible; after the removal of the Tris-EDTA buffer, rebanding of virus harvested at the heavy density resulted in its banding at the lower 1.16 g/cm3 density. The data indicate that density change could not be explained on the basis of the loss of some component from the virus or on the basis of the failure of the virus to reach equilibrium. However, it is possible that the two densities observed were a reflection of the existence of rubella virus in different hydration states in the presence and absence of Tris buffer containing EDTA.  相似文献   

17.
Developing advanced supercapacitors with both high areal and volumetric energy densities remains challenging. In this work, self‐supported, compact carbon composite electrodes are designed with tunable thickness using 3D printing technology for high‐energy‐density supercapacitors. The 3D carbon composite electrodes are composed of the closely stacked and aligned active carbon/carbon nanotube/reduced graphene oxide (AC/CNT/rGO) composite filaments. The AC microparticles are uniformly embedded in the wrinkled CNT/rGO conductive networks without using polymer binders, which contributes to the formation of abundant open and hierarchical pores. The 3D‐printed ultrathick AC/CNT/rGO composite electrode (ten layers) features high areal and volumetric mass loadings of 56.9 mg cm?2 and 256.3 mg cm?3, respectively. The symmetric cell assembled with the 3D‐printed thin GO separator and ultrathick AC/CNT/rGO electrodes can possess both high areal and volumetric capacitances of 4.56 F cm?2 and 10.28 F cm?3, respectively. Correspondingly, the assembled ultrathick and compact symmetric cell achieves high areal and volumetric energy densities of 0.63 mWh cm?2 and 1.43 mWh cm?3, respectively. The all‐component extrusion‐based 3D printing offers a promising strategy for the fabrication of multiscale and multidimensional structures of various high‐energy‐density electrochemical energy storage devices.  相似文献   

18.
Unlike other described isolates of broad bean true mosaic comovirus (BBTMV), a variant, code name SB, infected some non-leguminous plant species and, in N. benthamiana, induced systemic mottling and puckering of the leaves. However, like other described BBTMV isolates, purified SB particle preparations contained isometric particles c. 28 nm in diameter that sedimented as two nucleoprotein components with S20, w values of 90S and 109S; some preparations occasionally contained a component of c. 50S. Virus particles contained two ssRNA species which, when denatured in glyoxal, had estimated MT values of 2.1 × 106 and 1.3 × 106 and co-electrophoresed with cowpea mosaic virus RNA-1 and RNA-2 respectively. Isolate SB was serologically indistinguishable from British and German isolates of BBTMV. However, SB virus particles contained a major polypeptide (L) of Mr between c. 31 000 and up to three minor ones (S) or Mr between c. 20 000 and 24 000. This contrasts with protein preparations from other BBTMV isolates that typically contain only two polypeptides of Mr c. 37 000 (L) and 21 000 (S). Following isopycnic centrifugation in CsCl, SB particles purified from pea separated into two major components with densities of 1.39 and 1.44 g cm-3 and a minor component of estimated density 1.43 g cm-3. In Cs2SO4, virus preparations separated into three major components with densities of 1.30, 1.32 and 1.36 g cm-3 and a minor one of density 1.27 g cm-3. In CsCl isopycnic gradients, SB particles purified from TV. benthamiana separated into two components with densities of 1.38 and 1.43 g cm-3. During immuno-electrophoresis in agarose gels, freshly prepared virus and preparations stored for up to 4 days at 4°C contained a single component that migrated rapidly to the anode, whereas similar preparations of an English isolate of BBTMV migrated as a single component that moved only slowly toward the anode but which, within 48 h, contained an additional component with a migration rate similar to that of isolate SB. Isolate SB is therefore a host range variant of BBTMV which, in comparison with previously described isolates of BBTMV, has an increased negative charge of its particles prior to any appreciable degradation of its S protein, and S protein that is degraded less rapidly. These features probably account for the anomalies observed in isopycnic centrifugation.  相似文献   

19.

Background

Ferns are an important plant group, and older phylogenies of non-polypod ferns contain relatively high concentrations of aliphatic leaf waxes, lignins, and tannins that could contribute to soil organic matter (SOM) biochemistry and stability.

Methods

Pyrolysis gas-chromatography mass-spectrometry (py-GC/MS) analyzes biochemical fragments which can be related to lignin, polysaccharide, lipid, nitrogen (N)-bearing, non-lignin aromatics, and phenol source compounds. Thermochemolysis using tetramethylammonium hydroxide (TMAH) combined with py-GC/MS improves detection of lignin, cutin, and suberin-derived compounds. To examine the advantages and disadvantages of both methods for characterizing plant and soil biochemistry, we characterized non-polypod and polypod fern and angiosperm live tissues, roots and soils from the Kohala Mountains, Hawaii.

Results

Py-GC/MS provided a broad biochemical overview of compound groups including lignin, polysaccharide, lipid, N-bearing, non-lignin aromatics and phenol groups while TMAH-py-GC/MS detailed lignin units and fatty acids at the expense of the other categories. TMAH-py-GC/MS provided more detailed data on lignin, cutin, suberin and tannin-derived compounds. Both methods detected differences in lignin units between species, although p-coumaric and ferulic acids, predominantly found in ferns, were only observed with TMAH-py-GC/MS.

Conclusions

Both py-GC/MS and TMAH-py-GC/MS are methods to detect compound-specific plant biomarkers, but are most useful when combined for their complimentary results.  相似文献   

20.
Murine type B particles were separated from type C (Rauscher leukemia virus) by means of gentle (low-increment rate) density gradients. The best separation was obtained when the density ranged from 1.13 to 1.20 g/cm3 when sucrose was used and from 1.12 to 1.28 g/cm3 with CsCl. The buoyant densities of the B and C particle bands in sucrose were 1.18 and 1.16 g/cm3, respectively. The CsCl gradient gave a better separation with the B particles banding at a density of 1.20 g/cm3 and with the C particle density little different from its value in sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号