首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
微型生物反应器与高通量菌种筛选   总被引:1,自引:0,他引:1  
生物技术和生命科学将成为21世纪引发新科技革命的重要推动力量,人类所面临的健康、疾病、食品、医药制造、能源、环境等一系列问题成为这一时期最重要的内容。以微生物发酵技术为核心的新一代工业生物技术正在发挥越来越重要的作用,功能菌株(高产菌种)的构建与大规模筛选技术被列为重点研究的新一代工业生物技术之一。  相似文献   

2.
用国产生物反应器大规模高密度培养Vero细胞   总被引:3,自引:3,他引:3  
  相似文献   

3.
利用植物细胞生物反应器技术生产植物有用代谢产物,近些年来取得了很大发展,但植物细胞悬浮培养的工业化应用仍受到来自生物及工程技术上的限制。针对植物细胞生物反应器技术的特点及其研究进展,提出在综合考虑生物学和工艺学两方面的基础上,选育药用植物稳定高产的优良细胞系是提高植物细胞生物反应器技术可行性的关键。  相似文献   

4.
植物细胞生物反应器培养的研究进展(Ⅰ)   总被引:2,自引:1,他引:2  
黄艳  赵德修等 《植物学通报》2001,18(5):567-570,553
利用植物细胞大规模悬浮培养生产植物有用代谢产物在近些所来取得了很大发展,但植物细胞悬浮培养的工业化应用受到来自生物及工程技术上的限制,本文针对植物细胞培养的基本特点,详细讨论了与大规模生产有关的工程技术方面的问题,如植物细胞聚集,溶氧及气体成分,流体性能,剪切力对植物细胞培养产生的影响。  相似文献   

5.
大规模植物细胞培养生物反应器   总被引:8,自引:0,他引:8  
  相似文献   

6.
植物细胞生物反应器培养的研究进展(I)   总被引:6,自引:0,他引:6  
利用植物细胞大规模悬浮培养生产植物有用代谢产物在近些年来取得了很大发展,但植物细胞悬浮培养的工业化应用受到来自生物及工程技术上的限制.本文针对植物细胞培养的基本特点,详细讨论了与大规模生产有关的工程技术方面的问题,如植物细胞聚集、溶氧及气体成分、流体性能、剪切力对植物细胞培养产生的影响.  相似文献   

7.
利用植物细胞大规模悬浮培养生产植物有用代谢产物在近些年来取得了很大发展,但植物细胞悬浮培养的工业化应用受到来自生物及工程技术上的限制。本文针对植物细胞培养的基本特点,详细讨论了与大规模生产有关的工程技术方面的问题,如植物细胞聚集、溶氧及气体成分、流体性能、剪切力对植物细胞培养产生的影响。  相似文献   

8.
本文考察了在2.5LcelliGen细胞培养器和国产20LcellCul-20细胞培养生物反应器中采用微载体技术培养细胞的情况。分析了用cellcul-20细胞培养生物反应器进行大规模培养时细胞的生长、代谢规律,研究了从2.5L扩大到20L规模的细胞转移条件。采用微载体球间直接转移技术。提高了接种效率,减少了接种步骤和污染机会。当国产GT一25微载体用量为5g/L,采用连续灌注工艺培养vero细胞,在国产20L cellCul—20细胞培养生物反应器中,连续培养5天,细胞数增加7倍,细胞密度超过1.0×107 cells/m】。本文开发的细胞培养工艺,对于中试及工业规模的动物细胞大量培养具有一定的指导意义。  相似文献   

9.
固定化细胞生物反应器的应用及研究进展   总被引:2,自引:0,他引:2  
综述了固定化细胞生物反应器的应用及其在优化设计、传质、传热等方面的研究进展 ,可为优化设计反应器及自动化大生产提供一定的参考。  相似文献   

10.
生物反应器及其研究技术进展   总被引:2,自引:0,他引:2  
阐述了生物反应器设计、放大的新理念及关键技术发展,并在此基础上综述了应用于生物技术产品生产的生物反应器的主要发展趋势,包括以代谢流分析为核心的生物反应器系统、基于计算流体力学模拟技术的传统发酵罐改良、微型生物反应器、动物细胞反应器和酶反应器。  相似文献   

11.
Adaptation of mammalian cells to growth in serum-free media   总被引:5,自引:0,他引:5  
A three-step protocol is described for adapting an anchorage-dependent, serum-dependent recombinant mammalian cell lineage to high density serum-free suspension culture. The objective is a cell lineage that is well-suited for the manufacture of a recombinant protein. The first step of the protocol generates an anchorage-independent cell lineage by culturing trypsin-treated cells in spinner flasks using serum-containing medium. The second step adapts the lineage to serum-free medium through a series of serum reduction steps in the presence of defined growth-promoting additives. The third step adapts the lineage to high-cell-density conditions by culturing the cells in a bioreactor in a manner that allows development of tolerance to growth-inhibiting substances released by the cells. Examples are presented for the use of this protocol for recombinant CHO cells.  相似文献   

12.
    
Mammalian cells have been widely used to produce therapeutic proteins in stirred bioreactors in suspension culture. Local hydrodynamics can have a great impact on cell proliferation and protein synthesis, but there are few reports on spatial heterogeneity of nutrients, gas bubbles, and mass transfer coefficients. We have employed computational fluid dynamics (CFD) coupled with population balance equations to study local hydrodynamics in a 20 L stirred bioreactor. The flow patterns, energy dissipation rates, gas volume fraction, gas bubble size distribution and local mass transfer coefficient have been displayed throughout the whole bioreactor. Their implications for mammalian cell culture have been discussed. This study provides an insight into rational design and optimum operation conditions in a stirred bioreactor for mammalian cell cultivation.  相似文献   

13.
There is a dearth of technology and methods to aid process characterization, control and scale‐up of complex culture platforms that provide niche micro‐environments for some stem cell‐based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale‐up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1‐luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:256–260, 2014  相似文献   

14.
利用哺乳动物细胞发酵生产重组蛋白药物具有细菌、酵母等表达系统所不具备的显著优势,因此在生物制药工程中的重要性越来越突出。哺乳动物细胞对工业生产环境下的各种应激环境耐受能力差,易发生细胞凋亡,严重阻碍了大规模生产,降低了生产效率。细胞凋亡是细胞必经的生物学过程,随着对凋亡机制的深入了解,发展出各种抗凋亡策略,并有望应用于重构更适合工业生产的工程细胞。常用的抗凋亡策略包括:下调凋亡蛋白、上调抗凋亡蛋白、增强生长因子自表达、减少有毒代谢产物生成等。以上策略虽然能在一定程度上提高细胞的抗凋亡能力,但距离满足生产的工程细胞重构还有距离,围绕提高工程细胞的抗凋亡能力,已发展出\"凋亡工程\"这一重要的技术领域。  相似文献   

15.
This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 106 cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation–aeration systems.  相似文献   

16.
In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved.  相似文献   

17.
The presence of aggregated forms of proteins can be problematic for therapeutics due to the potential for immunogenic and pharmacokinetic issues. Although downstream processing can remove the aggregated forms, inhibiting aggregate formation upstream during the cell culture stage could reduce the burden on downstream processing and potentially improve process yields. This study first examined the effects of environmental factors (temperature, pH, and dissolved oxygen) and medium components (bivalent copper ion, cysteine, and cystine) on the aggregation of two different recombinant fusion proteins expressed by Chinese hamster ovary (CHO) cells. Any strategy to reduce protein aggregation upstream during cell culture must also consider potential effects on critical upstream parameters such as cell growth, harvest titer, and protein sialylation levels. Manipulating the culture temperature shift and cystine concentration in the medium were both identified as effective and practical strategies for reducing protein aggregation in both CHO-cell expression systems. Furthermore, a combination of both strategies was more effective in reducing protein aggregation levels compared to either approach individually; and without any negative effects on harvest titer and protein sialylation. This study demonstrates a practical methodology for decreasing protein aggregation during upstream processing and emphasizes the importance of process understanding to ensure production of recombinant glycoprotein therapeutics with consistent product quality.  相似文献   

18.
单克隆抗体是近年来发展最快、最成功的大分子药物之一,哺乳动物细胞作为单抗大规模制备最适宜的宿主,在工业生产中仍然存在成本高、产率低等缺点。近年来,抗细胞凋亡、控制细胞周期、优化代谢过程等细胞工程学方面的研究极大地推动了抗体表达及翻译后修饰技术的发展。以下对近年来单克隆抗体制备在细胞工程学方面取得的进展作一综述,并探讨该领域未来可能的研究方向。  相似文献   

19.
20.
    
The human bone morphogenetic protein‐2 (hBMP2) is a glycoprotein, which induces de novo bone formation. Here, recombinant production in stably transfected Chinese Hamster Ovary (CHO) cells is compared to transient expression in Human Embryo Kidney (HEK) cells and cell‐free synthesis in CHO cell lysates containing microsomal structures as sites of post‐translational processing. In case of the stably transfected cells, growth rates and viabilities were similar to those of the parent cells, while entry into the death phase of the culture was delayed. The maximum achievable rhBMP2 concentration in these cultures was 153 pg/mL. Up to 280 ng/mL could be produced in the transient expression system. In both cases the rhBMP‐2 was found to interact with the producer cells, which presumably contributed to the low yields. In the cell‐free system, hBMP2 yields could be increased to almost 40 μg/mL, reached within three hours. The cell‐free system thus approached productivities for the active (renatured) protein previously only recorded for bacterial hosts, while assuring comprehensive post‐translational processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号