首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
手性胺是一类具有重要价值的医药及精细化工中间体,如何实现手性胺类化合物的不对称合成是目前人们普遍关注的一个焦点问题。ω-转氨酶(ω-Transaminase,ω-TA)是一类能直接合成对映体手性胺的天然生物催化剂。相比于(S)-ω-TA,(R)-ω-TA的研究较少,但其需求量随着手性胺类药物的发展日趋增大。提高具有潜在应用价值的(R)-ω-TA的热稳定性,将有利于手性胺的制备。本文利用Py MOL软件和YASARA软件预测来源于土曲霉Aspergillus terreus的(R)-ω-TA中具有高温度因子(B-factor)的Loop区域,通过定点突变对Loop区域表面不稳定氨基酸逐步进行删除获得突变酶。结果表明,突变酶R131del和突变酶P132-E133del半失活温度分别为41.1℃和39.4℃,比野生酶提高了2.6℃和0.9℃;在40℃下的半衰期分别为15.0 min和10.0 min,为野生酶的2.2倍和1.5倍。此外,在400 K和10 ns的分子模拟条件下,突变酶R131del在Loop区域的均方根涨落(Root mean square fluctuation,RMSF)比野生型低,突变酶P132-E133del在Loop区域增加了4个氢键。本研究通过删除(R)-ω-转氨酶Loop区域表面不稳定氨基酸提高了该蛋白的热稳定性,同时也为其他酶热稳定性的理性设计提供了方法学指导。  相似文献   

2.
ω-转氨酶能催化羰基化合物发生不对称还原胺化反应,在制备手性胺类化合物方面具有较好的应用前景。由于底物结合区域特殊的空间结构,野生型ω-转氨酶在合成大位阻手性胺方面的应用受到了限制。此外,在立体选择性和稳定性方面这一类酶也存在一些不足,目前满足工业应用需求的ω-转氨酶仍较为有限。文中首先介绍了ω-转氨酶的结构特征和催化机制,并探讨S型和R型酶在结构特征方面的主要差异。然后对ω-转氨酶的分子改造研究进行了综述,重点阐述了基于结构特征和催化机制进行的分子改造研究,包括底物特异性改造、立体选择性改造和稳定性改造三方面。最后,对ω-转氨酶分子改造研究进展进行总结和展望。  相似文献   

3.
ω-转氨酶能催化羰基化合物发生不对称还原胺化反应,在制备手性胺类化合物方面具有较好的应用前景。由于底物结合区域特殊的空间结构,野生型ω-转氨酶在合成大位阻手性胺方面的应用受到了限制。此外,在立体选择性和稳定性方面这一类酶也存在一些不足,目前满足工业应用需求的ω-转氨酶仍较为有限。文中首先介绍了ω-转氨酶的结构特征和催化机制,并探讨S型和R型酶在结构特征方面的主要差异。然后对ω-转氨酶的分子改造研究进行了综述,重点阐述了基于结构特征和催化机制进行的分子改造研究,包括底物特异性改造、立体选择性改造和稳定性改造三方面。最后,对ω-转氨酶分子改造研究进展进行总结和展望。  相似文献   

4.
转氨酶能够催化氨基在氨基酸、烷胺、芳香胺等多种氨基化合物和醛、酮、酮酸等羰基化合物之间的可逆转移。由于其底物范围广、立体选择性高、催化条件温和等特点,ω-转氨酶已在手性胺绿色生物合成中展现了巨大应用前景。开发高效、特异、环保且具有自主知识产权的手性胺合成应用技术,对我国医药、农药、材料产业的发展具有重要意义。本文从应用技术角度,对近10年来我国机构报道的ω-转氨酶相关中国专利进行了系统分析,重点从ω-转氨酶资源开发、酶性能的蛋白工程改造、在手性胺合成中的应用现状、催化转化技术工艺4个方面对我国ω-转氨酶在手性胺生物合成领域的研究进展进行阐述,以期为ω-转氨酶基础理论的深入研究和相关应用技术的推广提供参考。  相似文献   

5.
内消旋-二氨基庚二酸脱氢酶不对称合成非天然的手性D-氨基酸是目前生物催化领域的研究热点。内消旋-二氨基庚二酸脱氢酶具有优良的立体选择性,利用其进行酶催化不对称合成光学纯的手性D-氨基酸,被广泛用于医药、食品、化妆品、精细化学品等领域。为了促进生物催化法在合成手性D-氨基酸方向的进一步发展,本文对内消旋-二氨基庚二酸脱氢酶催化合成D-氨基酸的现状进行了综述。重点介绍了Corynebacterium glutamicum、Ureibacillus thermosphaericus、Symbiobacterium thermophilum来源的内消旋-二氨基庚二酸脱氢酶在新酶的挖掘、催化性能、晶体结构解析、分子改造、功能与催化机制、合成D-氨基酸新途径等方面的研究进展,并对内消旋-二氨基庚二酸脱氢酶的未来研究方向及策略进行了展望。本综述将进一步加深人们对内消旋-二氨基庚二酸脱氢酶的认识,也为具有挑战性的生物合成任务提供信息借鉴。  相似文献   

6.
ω-转氨酶(ω-transaminase)可以通过手性拆分和不对称合成的催化反应来获得光学纯的手性胺类化合物和非天然氨基酸,在医药中间体合成中是一种重要的生物催化剂。采用基因挖掘技术,在基因组数据库中获得一个来自伯克氏菌Burkholderia phytofirmans Ps JN的ω-转氨酶基因(hbp),将该基因在大肠杆菌BL21(DE3)中克隆、表达,利用镍柱亲和层析将该酶(HBP)进行纯化并研究了其酶学性质和底物谱。结果表明,以β-苯丙氨酸(β-Phe)为氨基供体、丙酮酸为氨基受体,HBP具有较高的活力(33.80 U/mg)和立体选择性;其最适温度为40℃左右,最适p H在8.0–8.5之间。研究过程中,建立了一种简便快捷的紫外吸收法来检测β-Phe的脱氨反应,证明了该反应的热力学平衡性质。底物谱研究表明HBP可以以β-Phe及其衍生物为氨基供体。结果表明HBP能够有效地手性拆分rac-β-Phe及其衍生物,转化率在50%左右,ee99%。  相似文献   

7.
夏温娜  孙雨  闵聪  韩威  吴胜 《生物工程学报》2012,28(11):1346-1358
芳香族L-氨基酸是合成许多药物、农药、精细化学品和食品添加剂的重要手性砌块(Chiral buildingblocks)。利用酶催化具有高活性和高立体选择性的特点合成手性砌块是目前不对称合成领域重要的研究方向。通过对不同来源转氨酶的进化分析,选择分别源自原核生物大肠杆菌Escherichia coli和真核生物酿酒酵母Saccharomyces cerevisia中的两种具有代表性Ⅰ型芳香族转氨酶TyrB和Aro8,比较研究了两种转氨酶通过平衡逆转不对称氨化催化合成芳香族L-氨基酸的反应过程和催化效率。重组转氨酶TyrB和Aro8都能有效地合成天然芳香族氨基酸苯丙氨酸和酪氨酸以及非天然氨基酸苯甘氨酸。手性HPLC分析表明,合成的氨基酸都是L-构型的,e.e值等于100%。L-丙氨酸是适宜的氨基供体,转氨酶TyrB和Aro8都不能利用D-型氨基酸作为氨基供体。反应体系中氨基供体L-丙氨酸和氨基受体芳香族α-酮酸的最适摩尔比为4∶1。底物芳香族α-酮酸分子结构中芳香环上的取代基以及脂肪酸碳链部分的长度都对酶催化的转氨效率有显著的影响。在制备规模试验中,TyrB催化不对称转氨反应合成L-苯甘氨酸、L-苯丙氨酸和L-酪氨酸的比生产速率为0.28 g/(g.h)、0.31 g/(g.h)和0.60 g/(g.h),Aro8催化上述反应的比生产速率分别为0.61 g/(g.h)、0.48 g/(g.h)和0.59 g/(g.h)。研究结果对利用转氨酶通过平衡逆转不对称催化合成芳香族L-氨基酸的工业化应用具有指导意义。  相似文献   

8.
光学纯的手性胺是一类重要的手性砌块,广泛应用于药物、天然产物、精细化学品等化合物的合成中。手性胺的酶促合成方法因立体选择性高、反应条件温和、反应过程绿色等优点,引起了学术界与工业界的广泛关注。近年来,一类新颖的胺脱氢酶被报道,其能够利用廉价氨作为氨基供体,催化酮的不对称还原胺化,成为一种有潜力的手性胺合成生物催化剂。在胺脱氢酶的发现、分子改造、底物谱拓展、过程强化、多酶级联构建等方面已取得了显著的进展。本文中,笔者对该类酶取得的研究进展进行总结,并预测其未来的研究趋势和应用中面临的机遇与挑战。  相似文献   

9.
不对称还原胺化反应是制备医药中间体手性胺结构单元的重要反应。目前已有许多不同种类的酶被应用于合成手性胺,其中NAD(P)H依赖型氧化还原酶催化的还原胺化反应最为引人注目,因为其能够一步将潜手性酮化合物完全转化为光学纯的手性胺化合物。文中以亚胺还原酶、氨基酸脱氢酶、冠瘿碱脱氢酶和还原性酮胺化酶为例,从NAD(P)H依赖型氧化还原酶的结构特征、作用机理、分子改造及催化应用等方面,综述了其在不对称还原胺化合成手性胺领域的研究进展。  相似文献   

10.
苏氨酸醛缩酶(TAs)以磷酸吡哆醛为辅酶,催化不同的醛与α-氨基酸发生醇醛缩合反应,形成具有2个手性中心的β-羟基-α-氨基酸。TAs在不对称催化过程中可以控制产物α-碳位的立体构型,而对β-碳位的立体构型控制相对较弱。增强TAs在β-碳位的立体选择性是近年来研究TAs不对称催化的热点。本文重点阐述了TAs的结构与作用机制、定向进化,以及在生物催化合成中的应用,对TAs的研究与开发进行了展望。  相似文献   

11.
【背景】N-甲基-L-苯丙氨酸是一种N-烷基化芳香氨基酸,是重要的手性合成单元/中间体/组成成分,在医药、农业、食品等领域有重要应用价值的代谢产物中广泛存在。N-烷基化芳香氨基酸的合成与制备仍具有巨大的挑战。【目的】在研究加兰他敏的生物合成过程中,我们从产加兰他敏的红花石蒜中克隆并表征苯丙氨酸解氨酶LrPAL3。LrPAL3催化区域及对映选择性的氢胺化反应得到L-苯丙氨酸。通过生物信息学分析,推测LrPAL3可能催化反式-肉桂酸的一步N-甲基胺化反应得到N-甲基-L-苯丙氨酸。【方法】将反式-肉桂酸与甲胺,以及表达LrPAL3的大肠杆菌全细胞一起孵育。HPLC-DAD及HRESIMS分析表明,上述反应产物为N-甲基-苯丙氨酸。为确定该产物的立体构型,将上述催化反应放大,通过分离纯化得到该酶催化反应产物。【结果】该化合物的氢谱数据及比旋光数据与N-甲基-L-苯丙氨酸标准品的数据一致。由此说明,LrPAL3能够催化反式-肉桂酸和甲胺发生N-烷基胺化反应,区域和立体专一性地生成N-甲基-L-苯丙氨酸。【结论】本研究为手性N-烷基氨基酸的不对称合成提供了一种全新的绿色、高效生物催化剂。通过对LrPAL3的蛋白质定向进化及代谢工程,将会进一步扩展LrPAL3的催化反应范围,以多种N-烷基胺类及取代的苯基丙烯酸为底物,实现手性N-烷基-芳基氨基酸的高效区域及立体选择性生物合成。  相似文献   

12.
含芳香基手性醇是许多手性药物合成的关键手性砌块,生物催化不对称还原前手性酮是合成该类醇的重要方法之一.以4'-氯-苯乙酮为模型底物,从土壤中筛选得到一株能高效催化前手性芳香酮不对称还原合成相应手性醇的菌株,鉴定表明该菌株为白地霉( Geotrichum candid ).进一步考察了其催化4'-氯-苯乙酮不对称还原的反应特性,发现还原4'-氯-苯乙酮的产物主要为 S-4'-氯苯乙醇.在合适的反应条件下,其产率达到35%,对映选择性高于97%.  相似文献   

13.
手性羟基化合物以其独特的光、热和化学性质广泛应用于医药、农药、精细化工、功能材料等行业.立体专一性羰基还原酶能够直接针对关键手性位点催化不对称还原潜手性底物获得目的手性产物.基于羰基还原酶的底物多样性,具有不同化学结构和功能的醇类、酯类、氨基酸、环氧化合物等重要手性中间体能够通过不对称还原途径实现单一光学活性对映体的高效制备.然而,针对具有应用价值的含有大基团、结构复杂的潜手性羰基化合物,已知的羰基还原酶通常催化活性较低.本文综述了生物催化不对称氧化还原反应的特点和规律及其关键立体选择性羰基还原酶的性质和结构特征,并在此基础上,重点针对大基团手性羟基化合物的不对称合成,总结了羰基还原酶及其催化系统开发和应用的研究进展,并进一步提出解决该关键问题的主要发展策略.  相似文献   

14.
多官能化手性氨基酸及其衍生物是一类重要的手性药物以及合成手性药的关键中间体,如现在大量用于临床的左甲状腺素、赖诺普利、阿莫西林、缬沙坦、头孢氨苄以及青霉素等。进行多官能化手性氨基酸类化合物的不对称催化合成,可为新型化学药的设计与发现开辟新的视野。噁唑烷酮(Azlactone)被证明是合成四取代氨基酸衍生物的优秀底物。可通过不对称催化手段向其中引入需要的基团,再经多取代的噁唑烷酮直接开环得到一系列的目标化合物。本文主要综述了近年来基于恶唑烷酮的不对称催化反应构建四取代氨基酸类化合物的研究。  相似文献   

15.
尽管ω-转氨酶被认为是手性胺合成中极具工业潜力的生物催化剂,但是由于受限于酶的热不稳定及不利的反应平衡,能直接适用于工业的野生酶极少。为了发现工业适应潜力的新型ω-转氨酶,文中设计了包括底物、序列、克隆、酶活、转化率及酶学的工业适应性选择流程,并对各筛选步骤中存在的问题进行了研究,进而从土壤宏基因组中筛选出了一种来源于柄杆菌属的新型ω-转氨酶ATA-W12,以异丙胺为供体在1 mL反应体系中转化了85.84% 1-Boc-3-吡咯烷酮 (20 mmol/L) 和67.42% 1-Boc-3-哌啶酮 (20 mmol/L)。酶学筛选发现,ATA-W12在40 ℃孵育168 h活力维持不变;优选反应条件为pH 8.5、40 ℃;这些特征利于工业用理想氨基供体异丙胺的使用。笔者已采用ATA-W12实现了100 g/L光学纯(S)-(+)-1-Boc-3-氨基哌啶的50 mL实验室规模制备,为进一步工业化生产打下基础。  相似文献   

16.
手性技术与生物催化   总被引:5,自引:0,他引:5  
简要介绍了手性,手性技术与生物催化的基本概念。手性,是指一个有机分子具有不对称性,形成两种空间排布方式不同的对映异构体。手性技术即生产手性化合物的技术,手性化合物的制备方法主要有手性源、外消旋体拆分、不对称合成等几种。生物催化,即利用酶或微生物等生物材料催化进行某种化学反应,被认为是手性化合物生产取得突破的关健技术。文章还介绍了生物催化外消旋体拆分、生物催化不对称合成等几种生产手性化合物的应用实例。  相似文献   

17.
D-氨基酸广泛存在于生命物质中──关于生物分子手性研究发展的评述赵南生(北京天文馆,北京100044)关键词D-氨基酸,D-氨基酸氧化酶,生物分子手性1924年化学家K.Frendenberg将L-氨基酸冠以"天然",而D-氨基酸就成了"非天然",类...  相似文献   

18.
<正> 氨基酸的不对称合成是近年来十分热门的研究课题之一。八十年代发展起来的双不对称合成新策略为高光学纯度物质的合成提供了一条有益的思路。本文考察了在手性相转移催化剂催化下,通过邻苯二甲酰胺钾与手性α-溴代丙酸龙脑醋之间的Gabriel反应制取光学活性丙氨酸的双不对称合成反应,观察到了显著的双不对称诱导效应。  相似文献   

19.
[背景] N-甲基-L-苯丙氨酸是一种N-烷基化芳香氨基酸,是重要的手性合成单元/中间体/组成成分,在医药、农业、食品等领域有重要应用价值的代谢产物中广泛存在。N-烷基化芳香氨基酸的合成与制备仍具有巨大的挑战。[目的] 在研究加兰他敏的生物合成过程中,我们从产加兰他敏的红花石蒜中克隆并表征苯丙氨酸解氨酶LrPAL3。LrPAL3催化区域及对映选择性的氢胺化反应得到L-苯丙氨酸。通过生物信息学分析,推测LrPAL3可能催化反式-肉桂酸的一步N-甲基胺化反应得到N-甲基-L-苯丙氨酸。[方法] 将反式-肉桂酸与甲胺,以及表达LrPAL3的大肠杆菌全细胞一起孵育。HPLC-DAD及HRESIMS分析表明,上述反应产物为N-甲基-苯丙氨酸。为确定该产物的立体构型,将上述催化反应放大,通过分离纯化得到该酶催化反应产物。[结果] 该化合物的氢谱数据及比旋光数据与N-甲基-L-苯丙氨酸标准品的数据一致。由此说明,LrPAL3能够催化反式-肉桂酸和甲胺发生N-烷基胺化反应,区域和立体专一性地生成N-甲基-L-苯丙氨酸。[结论] 本研究为手性N-烷基氨基酸的不对称合成提供了一种全新的绿色、高效生物催化剂。通过对LrPAL3的蛋白质定向进化及代谢工程,将会进一步扩展LrPAL3的催化反应范围,以多种N-烷基胺类及取代的苯基丙烯酸为底物,实现手性N-烷基-芳基氨基酸的高效区域及立体选择性生物合成。  相似文献   

20.
由于氟原子的特殊性质,化合物中引入氟原子可显著改变其物理化学性质。因此,氟原子在药物中的应用越来越广。此外,80%药物分子结构属于手性分子。其中,氟代手性醇常见于手性药物结构中,该类结构的合成方法研究具有重要的意义。不对称还原含氟酮是合成此结构的常见方法。与化学还原方法相比,生物催化还原具有对映选择性强、产率高和易于分离纯化等优点。生物催化,特别是酶催化还原含氟酮类化合物成为手性药物合成领域的研究热点。本文从纯化酶催化和全细胞催化两个方面,综述了近年来含氟酮生物催化还原合成氟代手性醇的研究进展,并分析总结了氟代对酮生物催化还原的影响,最后对生物催化还原法未来的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号