首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
铁蛋白(Ferritin)是一种广泛存在于生物体中的笼状蛋白,由24个亚基自组装形成的蛋白质外壳和铁内核两部分组成,是维持机体铁代谢平衡的重要蛋白。最新发现,人血清铁蛋白含量的变化与某些疾病相关,特别是发现利用大肠杆菌重组表达、仿生合成的磁性人铁蛋白具有双功能特性,即识别肿瘤并使其可视化。此外,铁蛋白独特的结构及理化性质使其成为理想的纳米载体,用于构筑多功能肿瘤成像和药物输送的平台。本文重点介绍人铁蛋白的新功能及其在疾病诊断和肿瘤靶向治疗中的应用前景。  相似文献   

2.
植物铁蛋白转基因的应用   总被引:5,自引:1,他引:4  
植物铁蛋白是一种铁存放蛋白,既可以储存大量的可被植物利用的铁,又能抵抗环境胁迫。利用铁蛋白的转基因研究不仅可以缓解由于铁缺乏而引起的一系列疾病,而且能提高植物对环境的耐受性,在生物治疗中具有重要意义。文章就铁蛋白的结构以及铁蛋白转基因植物在上述几个领域中的研究进展作简单的介绍。  相似文献   

3.
铁蛋白是一种肿瘤相关蛋白质。我们从人肝癌组织中分离纯化了铁蛋白,并筛选到一株抗该铁蛋白的单克隆抗体杂交瘤细胞株(6D6),它针对铁蛋白上的构象决定簇,并对人源铁蛋白高度专一。然后我们用此单抗建立了测定铁蛋白浓度的夹心ELISA法,并对方法的灵敏度,就确度及特异性作了研究。本法用于测定不同血清标本的结果表明:肝癌病人血清中的铁蛋白浓度明显高于正常人,这可能对临床诊断会有使用价值。  相似文献   

4.
人心肌匀浆经热变性,酸化,硫酸铵盐析,超离心、Sepharose CL-4B柱层析和制备等电聚焦分离,得到酸性铁蛋白,经鉴定,所得酸性铁蛋白pI为5.0,H亚基分子量为21kD,L亚基为19KD,PAGE分析呈单一区带,制备了兔抗人酸性铁蛋白抗血清,用该抗血清建立的人酸性铁蛋白放射免疫分析可检测出80%甲胎蛋白阴性肝癌病人。  相似文献   

5.
铁元素是生物体中必不可少的微量元素,在生物的生长发育中发挥着重要作用。铁蛋白是一种分布广泛的球形蛋白,能够以稳定的形式储存大量铁。铁蛋白通过储存和释放铁来维持机体内铁平衡。铁蛋白不仅是机体中重要的铁储存蛋白,同时也能有效保护生物体免受来自氧自由基的损伤。与此同时,铁蛋白含量可以作为一些疾病预防检测的明确指标。对铁的代谢吸收及铁对基因调控的研究,进一步说明了维持铁平衡对生物体有重要意义。  相似文献   

6.
铁蛋白分析技术的研究进展   总被引:2,自引:0,他引:2  
铁蛋白是含铁蛋白质,1943年Cranick用硫酸铵沉淀、超滤、硫酸镉重结晶、凝胶层析等技术,获得铁蛋白,经免疫电泳、等电聚焦电泳和离子交换层析鉴定,血清铁蛋白由含铁单体,  相似文献   

7.
棕色固氮菌(OP)体内的固氮酶钼铁(MoFe)蛋白和细菌铁蛋白均为重要的生物功能蛋白。前者为生物固氮的关键酶[1],后者则可为生物代谢贮存丰富而又可溶的铁原子[2]。因而都得到了广泛而深入的研究。Kim[3]报道了MoFe蛋白衍射结果。赵宝光等[2]...  相似文献   

8.
人心肌匀浆经热变性、酸化、硫酸铵盐析、超离心、SepharoseCL-4B柱层析和制备等电聚焦分离,得到酸性铁蛋白。经鉴定,所得酸性铁蛋白pI为5.0,H亚基分子量为21kD,L亚基为19kD,PAGE分析呈单一区带。制备了兔抗人酸性铁蛋白抗血清,用该抗血清建立的人酸性铁蛋白放射免疫分析可检测出80%甲胎蛋白阴性肝癌病人。  相似文献   

9.
纯化的柱孢鱼腥藻铁蛋白能够与棕色固氮菌的钼铁蛋白有效地交叉反应,展现较高的活性。此异源交叉反应的乙炔还原比活及放氢比活,分别是蓝藻同源互补比活的83.8及66.7%。比较藻铁蛋白与菌钼铁蛋白异源交叉反应及藻固氮酶组分之间的同源反应的动力学特点时发现,铁蛋白对钼铁蛋白的最佳克分子比数前者(异源交叉反应)较后者(藻同源反应)为高,前者为5,后者为1;但反应的时间进程两者差别不大。  相似文献   

10.
抗人铁蛋白单抗6D6和A-hF-C与肝型铁蛋白和心型铁蛋白的反应性有所不同。6D6对两种铁蛋白的反应性相似;而A-hF-C单抗与肝型铁蛋白的反应性较强。我们将6D6和A-hF-C分别制成了亲和凝胶,用来纯化人肝脏和心脏粗抽提物中的铁蛋白。此法具有操作简便,产率和产品纯度高等优点。  相似文献   

11.
Ferritin in the field of nanodevices   总被引:2,自引:0,他引:2  
Biomineralization of ferritin core has been extended to the artificial synthesis of homogeneous metal complex nanoparticles (NPs) and semiconductor NPs. The inner cavity of apoferritin is an ideal spatially restricted chemical reaction chamber for NP synthesis. The obtained ferritin (biocomplexes, NP and the surrounding protein shell) has attracted great interest among researchers in the field of nanodevices. Ferritins were delivered onto specific substrate locations in a one-by-one manner or a hexagonally close-packed array through ferritin outer surface interactions. After selective elimination of protein shells from the ferritin, bare NPs were left at the positions where they were delivered. The obtained NPs were used as catalysts for carbon nanotube (CNT) growth and metal induced lateral crystallization (MILC), charge storage nodes of floating gate memory, and nanometer-scale etching masks, which could not be performed by other methods.  相似文献   

12.
Summary A main yolk component in the oocytes of the pulmonate snailPlanorbarius corneus L. has been isolated and identified as the iron storage protein ferritin by its ultrastructure, iron content, immuunological properties and behaviour in disc electrophoresis. As judged from acrylamide electrophoresis data and ultrastructural observations, yolk ferritin is an exogenous protein which is synthesised in the hepatopancreas and taken up by the oocytes by endocytosis.  相似文献   

13.
《Free radical research》2013,47(2):101-109
Inflammation induces the hepatic synthesis of the iron storage protein (apo)ferritin, which is released into the circulation, and behaves as an acute phase protein. The biological significance of the extracellular rise in serum (apo)ferritin is unknown.

We have observed that (apo)ferritin will stimulate superoxide production from neutrophils in the presence of cytochalasin B across a physiologically appropriate concentration range. We therefore propose that extracellular ferritin has an important role in host defence against bacteraemia by stimulating oxidative metabolism.  相似文献   

14.
A Possible Role for Ferritin During Inflammation   总被引:4,自引:0,他引:4  
Inflammation induces the hepatic synthesis of the iron storage protein (apo)ferritin, which is released into the circulation, and behaves as an acute phase protein. The biological significance of the extracellular rise in serum (apo)ferritin is unknown.

We have observed that (apo)ferritin will stimulate superoxide production from neutrophils in the presence of cytochalasin B across a physiologically appropriate concentration range. We therefore propose that extracellular ferritin has an important role in host defence against bacteraemia by stimulating oxidative metabolism.  相似文献   

15.
根据铁蛋白基因的保守序列,搜索GenBank数据库中华鲟的EST数据库得到一条同源序列.通过RT-PCR的方法对该序列进行扩增,修改其测序错误,获得中华鲟铁蛋白亚基cDNA全长,经过注释提交GenBank数据库,获取序列登录号EU348782.该cDNA长度为896bp,包含531bp的完整编码区,推测编码的蛋白质为176aa,分子量为20339.9Mr,理论等电点为5.66.它和大两洋鲑鱼铁蛋白序列同源性最高,达到82.9%.该基闪在中华鲟肝脏、胰脏、肌肉、脑、心脏、鳃和胃粘膜等多种组织表达,在胰脏和心脏中表达量较高,在肌肉组织中表达较低.根据同源模建的方法得到该蛋白质三维结构,其包括5个α螺旋和10个转角结构,和人、蛙和细菌的铁蛋白均能很好的叠合,表现了很高的相似性,表明该蛋白结构和功能在基因进化中的高度保守性.  相似文献   

16.
The iron storage protein, ferritin, represents a possible source of iron for oxidative reactions in biological systems. It has been shown that superoxide and several xenobiotic free radicals can release iron from ferritin by a reductive mechanism. Tetravalent vanadium (vanadyl) reacts with oxygen to generate superoxide and pentavalent vanadium (vanadate). This led to the hypothesis that vanadyl causes the release of iron from ferritin. Therefore, the ability of vanadyl and vanadate to release iron from ferritin was investigated. Iron release was measured by monitoring the generation of the Fe2+-fcrrozine complex. It was found that vanadyl but not vanadate was able to mobilize ferritin iron in a concentration dependent fashion. Initial rates. and iron release over 30 minutes. were unaffected by the addition of superoxide dismutase. Glutathione or vanadate added in relative excess to the concentration of vanadyl, inhibited iron release up to 45%. Addition of ferritin at the concentration used for measuring iron release prevented vanddyl-induced NADH oxidation. Vanadyl promoted lipid peroxidation in phospholipid liposomes. Addition of ferritin to the system stimulated lipid peroxidation up to 50% above that with vanadyl alone. Fcrritin alone did not promote significant levels of lipid peroxidation.  相似文献   

17.
根据铁蛋白基因的保守序列,搜索GenBank数据库中华鲟的EST数据库得到一条同源序列。通过RT-PCR的方法对该序列进行扩增,修改其测序错误,获得中华鲟铁蛋白亚基cDNA全长,经过注释提交GenBank数据库,获取序列登录号EU348782。该cDNA长度为896 bp,包含531bp的完整编码区,推测编码的蛋白质为176 aa,分子量为20339.9 Mr,理论等电点为5.66。它和大西洋鲑鱼铁蛋白序列同源性最高,达到82.9%。该基因在中华鲟肝脏、胰脏、肌肉、脑、心脏、鳃和胃粘膜等多种组织表达,在胰脏和心脏中表达量较高,在肌肉组织中表达较低。根据同源模建的方法得到该蛋白质三维结构,其包括5个α螺旋和10个转角结构,和人、蛙和细菌的铁蛋白均能很好的叠合,表现了很高的相似性,表明该蛋白结构和功能在基因进化中的高度保守性。  相似文献   

18.
Abstract : Studies on iron uptake into the brain have traditionally focused on transport by transferrin. However, transferrin receptors are not found in all brain regions and are especially low in white matter tracts where high iron concentrations have been reported. Several lines of research suggest that a receptor for ferritin, the intracellular storage protein for iron, may exist. We present, herein, evidence for ferritin binding sites in the brains of adult mice. Autoradiographic studies using 125I-recombinant human ferritin demonstrate that ferritin binding sites in brain are predominantly in white matter. Saturation binding analyses revealed a single class of binding sites with a dissociation constant ( K D) of 4.65 × 10-9 M and a binding site density ( B max) of 17.9 fmol bound/μg of protein. Binding of radiolabeled ferritin can be competitively displaced by an excess of ferritin but not transferrin. Ferritin has previously been shown to affect cellular proliferation, protect cells from oxidative damage, and deliver iron. The significance of a cellular ferritin receptor is that ferritin is capable of delivering 2,000 times more iron per mole of protein than transferrin. The distribution of ferritin binding sites in brain vis-à-vis transferrin receptor distribution suggests distinct methods for iron delivery between gray and whi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号