首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物光合作用产生的蔗糖是植物生长发育的主要碳源物质,还是诱导植物生长发育过程中诸多相关基因表达的特异信号分子[1].蔗糖分子在植物器官及组织间的生理分配维持着整个植物体的正常生长发育[2].植物蔗糖转运载体(sucrosetransporter,SUT)是一类担负着蔗糖分子在细胞间的转运及信号转导的功能性蛋白家族,它在蔗糖的韧皮部装载、沿韧皮部的再吸收、韧皮部卸载和向库器官的转运等跨膜运输以及蔗糖特异信号感应过程中发挥着重要的生理功能[3~5].植物蔗糖转运载体蛋白分布于植物细胞质膜上,该转运载体蛋白含有12个疏水性跨膜结构域,在其氨…  相似文献   

2.
水孔蛋白是由多基因编码的介导水分快速跨膜转运的膜内在蛋白。植物水孔蛋白分为4类,具有多功能性,包括介导水分的快速跨膜转运,参与气孔运动,参与叶肉内CO_2的运输,调节植物对中性分子(甘油、NH_3、尿素)和营养元素(硼、硅)的吸收,参与植物体内的氧化应激及信号的跨膜转导等。  相似文献   

3.
主要协同转运蛋白超家族(Major facilitator superfamily,MFS)是目前已知最大的膜转运蛋白超家族之一,包括100万个测序成员,其长度大都分布在400-600个氨基酸残基之间。根据TCDB数据库显示,MFS已经扩展到95个家族,它们可以促进糖、药物分子、肽、三羧酸循环代谢产物、有机阴离子和无机阴离子等溶质在电化学梯度下进行跨膜运输。目前,对于MFS转运蛋白的晶体结构及转运机制的研究较多,研究发现MFS转运蛋白家族通常具有12个跨膜螺旋单位,并拥有其独特的折叠方式(MFS折叠),蛋白呈现向胞内、胞外开口或闭合的构象,以"摇杆开关"的转运方式进行物质的运输。MFS转运蛋白超家族在动植物中的生理作用较为广泛,在近期,人源MFS转运蛋白的研究更是引发关注,一些MFS转运蛋白家族成员的缺失可导致大脑萎缩和发育迟缓等;还有一些MFS蛋白具有调节细胞酸碱平衡、促进抗癌和消炎药物吸收等作用,关于人源MFS转运蛋白的研究为糖尿病、疲劳综合征、心血管疾病、癌症等人类疾病的防治提供了依据。主要介绍MFS转运蛋白超家族的发展,阐述其晶体结构、转运机制及生理作用,并在此基础上进行展望,以期为MFS的进一步深入研究及探讨提供理论依据。  相似文献   

4.
《植物生理学通讯》2011,(7):726-730
蔗糖是光合作用的主要产物,作为碳同化的产物在植物体内进行分配。蔗糖的转运机制和效率通过减弱产物抑制来影响光合产率,通过控制源/库关系和生物量分配来调控植物活性。蔗糖在细胞质合成,或通过胞间连丝进行细胞问转运,或跨膜区域化,或外输入质外体被相邻细胞吸收。作为相对大极性的化合物,蔗糖的有效膜转运需要转运蛋白协助。跨液泡膜运输机制可能通过异化扩散、质子对向运输和同向运输;而跨质膜的运输则可能通过质子同向运输和异化扩散类似机制。近几十年仅在分子水平对质子同向运输进行了较为详尽的研究。这篇综述旨在综合介绍最近和过去关于蔗糖跨膜转运与植物整体碳分布机制。  相似文献   

5.
ABC转运蛋白家族是一类通过结合并水解ATP释放能量实现底物的跨膜运输的转运蛋白,它们参与了植物众多的生理代谢过程,根据保守区的进化关系将ABC转运蛋白家族分成8个亚族,其中ABCB转运蛋白为第二大亚族。ABCB 转运蛋白具保守的NBDs结构域,由6个跨膜α-螺旋的疏水跨膜结构域组成了TMDs结构域,形成溶质跨膜的通道,但是其结构、长度与序列则变化多样。按分子大小不同将植物ABCB转运蛋白分为全分子转运蛋白、半分子转运蛋白两类,通过测序发现在拟南芥、水稻和番茄等植物上均有一定比列的ABCB转运蛋白,且行使多种功能。有研究表明,ABCB转运蛋白基因介导镉、铅和铝等重金属离子的转运,提高植物重金属耐性;它直接参与植物体内生长素的运输,从而调控植物高度;它还可能将苹果酸从质体转运到保卫细胞中调节气孔的开合。近年来,越来越多的ABCB转运蛋白被鉴定,但是ABCB亚家族庞大,底物特异性强,转运机制复杂,多数转运蛋白的功能尚未确定。因此,了解ABCB转运蛋白在生命活动过程中的重要性,以及基因表达调控的机制,解析ABCB转运蛋白在响应逆境胁迫过程中的重要作用,以期为植物抗逆性育种提供思路。  相似文献   

6.
植物ABC和MATE转运蛋白与次生代谢物跨膜转运   总被引:1,自引:0,他引:1  
植物产生大量的次生代谢物,不但对植物自身适应性具有极其重要的作用,而且有着巨大的实用价值。次生代谢物的跨膜转运是植物次生代谢工程研究的一个新兴领域。ABC(ATP-binding cassette)和MATE(multidrug and toxin extrusion)转运蛋白与生物体内多种物质的跨膜转运有关,在植物次生代谢物的运输过程中均发挥着重要作用。文章主要综述了ABC和MATE转运蛋白在植物次生代谢物跨膜转运中的研究进展。  相似文献   

7.
从NCBI数据库中检索大肠杆菌MG1655膜蛋白pspD、yiaW和yeeE的氨基酸序列,采用生物信息学在线分析软件对三种膜蛋白的理化性质、保守结构域、跨膜区、信号肽、磷酸化位点、糖基化位点及相互作用蛋白拓扑网络进行了预测分析。实验表明psp D为亲水性蛋白,分子中不存在跨膜结构,yiaW和yeeE为疏水性蛋白,分子中分别有2个和9个跨膜区;3个蛋白分子中均不存在信号肽序列,也没有磷酸化位点,pspD中有1个糖基化位点,yiaW和yeeE中分别有2个和7个糖基化位点。3个蛋白二级结构中组成最多的是α-螺旋分别占56.16%、57.94%和42.61%。三级结构的预测结果与二级结构预测一致。对其相互作用蛋白的拓扑网络预测发现,pspD属于噬菌体休克蛋白操纵子家族成员,与pspA、pspB和pspC蛋白关系最为密切,推测其可能在特殊环境中对于维持膜功能有极其重要的作用;yiaW与yiaV蛋白为膜融合蛋白(外排泵组件,信号锚,与物质外排有关),和ycdZ (DUF1097家族内膜蛋白)、nrfA (亚硝酸还原酶)、nrfD (甲酸依赖亚硝酸盐还原酶)蛋白相互作用关系最为密切。yeeE蛋白与保守蛋白yeeD和yedF为同源蛋白,关系最为密切。此外,yeeE蛋白与cysJ、Cysp、cysN、cysD等硫酸盐跨膜运输蛋白关系密切,根据前面的预测其有9个跨膜区,推测其可能与物质的跨膜转运相关。  相似文献   

8.
跨膜离子转运蛋白与植物耐盐的分子生物学   总被引:2,自引:0,他引:2  
植物抵御盐害的主要方式是增加Na 的外排、减少Na 的吸入和Na 的区隔化,而Na 的跨膜运输主要由质膜和液泡膜上的离子转运蛋白完成。对质膜和液泡膜跨膜离子转运蛋白包括K /Na 离子转运蛋白,Na /H 逆向转运蛋白以及液泡膜H -PPase的分子生物学研究及应用进展进行了综述。  相似文献   

9.
真核细胞中含有多种不同功能的转运囊泡。虽然转运途径和携带物质各异,但细胞转运的基本分子机制却呈现出高度相似性和保守性。大多数转运途径都需要一种SNARE(Soluble NSF Attachment Protein Receptor)蛋白质复合体介导转运膜泡与靶膜的融合。同时,另一个蛋白家族,Secl/Muncl8蛋白(SM蛋白)也在囊泡运输中发挥重要作用。但是相比于对SNARE蛋白的认识的一致性,在不同的研究中SM蛋白的功能及其与SNARE复合体的相互作用方式却不尽相同。以下综述近年来有关SM蛋白结构和功能的研究进展,并归纳SM蛋白分子的作用机制、功能以及应用。  相似文献   

10.
为了揭示细胞对盐胁迫渗透适应的分子机制,以新鉴定的中度嗜盐芽孢杆菌Bacillussp.I121为实验材料,分析了该嗜盐菌质膜上的盐胁迫响应蛋白.为此,通过蓝色温和凝胶双向电泳(BN/SDS-PAGE)对纯化的质膜组分进行了差异蛋白质组学研究.经MALDI-TOF/TOF质谱分析,鉴定了8个盐胁迫响应蛋白.盐胁迫诱导上调表达的蛋白质包括ABC型转运蛋白、3-磷酸甘油透性酶、嘧啶核苷转运蛋白和甲酸脱氢酶,下调表达的蛋白质包括琥珀酸脱氢酶(succinate dehydrogenase)铁硫亚基、黄素蛋白亚基、细胞色素b556亚基以及分子伴侣DnaJ的同源蛋白;酶活力测定结果表明胁迫条件下上述蛋白质的活性变化与表达量变化相一致.这些蛋白质中绝大多数属于高度疏水的跨膜蛋白,主要负责物质跨膜运输及能量代谢.上述结果表明,中度嗜盐菌Bacillus sp.I121可通过加快跨膜物质运输,同时抑制TCA循环完成盐胁迫条件下相容性溶质脯氨酸和四氢嘧啶的合成与积累.也进一步证明,蓝色温和凝胶双向电泳不仅可用于线粒体、叶绿体中蛋白质复合物的分析,也同样适用于细胞质膜上高度疏水蛋白复合物的比较研究.  相似文献   

11.
以"物质跨膜运输的方式"一节为例,阐述在课堂教学实践活动中应用不同方法巧设支架,攻克本节课的重、难点,探讨"支架式教学"在生物学教学实践中的应用。  相似文献   

12.
植物细胞的水孔蛋白   总被引:6,自引:4,他引:2  
对近年来发现和研究的转运水分跨膜运输的蛋白—水孔蛋白(aquaporins),从种类、结构、功能调控及生理意义方面作了介绍。  相似文献   

13.
植物氨基酸转运子研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
氨基酸是高等植物氮素同化产物长距离运输及在组织间分配的主要形式,通过跨膜转运的方式在植物体内进行运输。氨基酸转运子是位于生物膜上吸收及转运氨基酸的蛋白家族,对植物氮素营养具有重要贡献。本文对植物氨基酸转运子的表达、调控及其与氮素利用效率、植物产量与品质形成、抗逆性及适应性等方面的研究进展进行了综述。  相似文献   

14.
植物水孔蛋白研究进展   总被引:1,自引:0,他引:1  
水孔蛋白是植物重要的膜功能蛋白,不仅介导植物各组织间水分的高效转运,还参与植物体内其他物质的跨膜转运,同时在植物光合作用、生长发育、免疫应答以及信号转导等生理过程中也发挥重要作用。本文主要综述了植物水孔蛋白结构特征和分类,多种生理功能,以及其转录水平和转录后水平活性调节等方面的最新研究进展,并就如何系统全面地开展水孔蛋白参与植物生长发育过程的分子调控机制研究提出展望。植物水孔蛋白的深入研究有助于阐明植物体内物质转运的分子机理及其生理作用机制,对指导农业生产中作物的生长发育调控有重要理论意义。  相似文献   

15.
P-糖蛋白结构及作用机制   总被引:4,自引:0,他引:4  
ABC (ATP-binding cassette) 转运蛋白广泛存在于各种生物体细胞中,例如细菌的内层细胞浆膜和真核生物的细胞膜和细胞器膜.其利用与ATP的结合和水解供能进行底物的跨膜转运,其中一部分ABC转运蛋白能转运多种疏水性分子.P-糖蛋白隶属于ABC转运蛋白超家族,是研究最为透彻的一员,主要功能是防止机体对外来有害物质的摄入.P-糖蛋白(P-glycoprotein)由4 个基本结构域组成,2 个跨膜区和2 个位于细胞浆内的核苷酸结合区.核苷酸结合区参与ATP的结合和水解,而各由6 个α 跨膜螺旋组成的2个跨膜区联合构成了底物跨膜转运的通道.P 糖蛋白能转运多种不同结构的底物,包括脂类、胆汁酸、多肽和外源性化学物质,这对机体的生存至关重要,但同时也存在不利的一面,包括干扰了药物的运输,从而导致了多药耐药现象的产生.本文就P-糖蛋白的分子结构和作用机制的最新研究进展进行综述.  相似文献   

16.
核孔复合体可以看作是一种特殊的跨膜运输蛋白复合体,并且是一个双功能、双向性的亲水性核质交换通道.双功能表现在它有2种运输方式:被动扩散和主动运输.从一道高考题着手,对核孔复合体2种物质运输方式进行了粗浅的分析.  相似文献   

17.
转运蛋白是一类膜蛋白,可介导生物膜内外化学物质的跨膜转运及信号交换。有机酸转运蛋白在微生物有机酸代谢的跨膜转运过程中发挥重要作用,根据转运蛋白有机酸转运的方向不同可以分为摄取转运蛋白和外排转运蛋白。在微生物代谢中,有些有机酸可以作为能源直接参与体内代谢,有些是能量转换过程中的重要中间产物;摄取转运蛋白的过表达,可以促进微生物细胞获取能源物质,高效的生产目标产物;有机酸摄取转运蛋白敲除或外排转运蛋白表达,有利于底盘细胞外排更多目标产物,进而促进有机酸的生物合成。研究有机酸转运蛋白的结构和功能,有助于解析微生物细胞有机酸生物合成及利用的机制,对于提高工业微生物对有机酸的利用及生物合成具有重要作用。本文综述了微生物有机酸转运蛋白分类和结构、转运方式和转运功能等方面,重点综述了转运蛋白在有机酸生产中的应用,为工业微生物有机酸的高效生物合成及未来发展提供参考。  相似文献   

18.
用葡萄糖跨膜运输蛋白的抑制剂-根皮素,观察到它对Ⅱ型糖尿病患者红细胞膜葡萄糖输入的抑制常数显著增大,提示了患者葡萄糖运输体外侧和底物分子结合位点发生了结构改变。进一步,测量了和膜上葡萄糖运输体能特异结合的葡萄糖、细胞松弛素B、根皮素等对血影膜上色氨酸残基荧光的淬灭效应。由淬灭效应前后血影膜荧光强度的相对变化,证实患者红细胞膜对葡萄糖转运功能的异常和运输蛋白中某些色氨酸残基(特别是膜外侧区段)周围结构的改变有关。  相似文献   

19.
离子通道或离子转运体介导的离子跨膜运输是细胞中两种重要的离子跨膜运输方式。与离子通道介导的被动运输不同,离子转运体介导的离子跨膜转运是一种主动运输方式,具有多种独特的生物学特性。本文以Na~+/HCO_3~-共转运体(Na~+/HCO_3~-cotransporter,NBC)为例,对离子转运体的物理化学和电生理学基本原理及其特性进行分析与介绍。从本质上说,离子转运体是一种酶,本文首先从酶促反应的角度,对NBC介导的离子跨膜运输过程进行分析,介绍了离子转运体的化学计量比、表征离子转运效率的转换数及与此相关的离子转运体的运输通量等。本文进一步从热力学的角度对NBC介导Na~+和HCO_3~-跨膜运输的电生理学原理进行了较为详细的分析。通过热力学分析,本文阐释了NBC依据化学计量比决定其离子转运方向的原理。最后,本文对NBC化学计量比的实验测定和化学计量比的生理学意义,即NBC不同工作模式与其在特定组织中的具体生理学过程的关系,进行了讨论。  相似文献   

20.
离子通道或离子转运体介导的离子跨膜运输是细胞中两种重要的离子跨膜运输方式。与离子通道介导的被动运输不同,离子转运体介导的离子跨膜转运是一种主动运输方式,具有多种独特的生物学特性。本文以Na^+/HCO_3^-共转运体(Na^+/HCO_3^-cotransporter,NBC)为例,对离子转运体的物理化学和电生理学基本原理及其特性进行分析与介绍。从本质上说,离子转运体是一种酶,本文首先从酶促反应的角度,对NBC介导的离子跨膜运输过程进行分析,介绍了离子转运体的化学计量比、表征离子转运效率的转换数及与此相关的离子转运体的运输通量等。本文进一步从热力学的角度对NBC介导Na^+和HCO_3^-跨膜运输的电生理学原理进行了较为详细的分析。通过热力学分析,本文阐释了NBC依据化学计量比决定其离子转运方向的原理。最后,本文对NBC化学计量比的实验测定和化学计量比的生理学意义,即NBC不同工作模式与其在特定组织中的具体生理学过程的关系,进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号