首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
辅酶再生体系的研究进展   总被引:9,自引:0,他引:9  
张翀  邢新会   《生物工程学报》2004,20(6):811-816
辅酶再生是实现氧化还原酶催化反应的必需步骤 ,是关系到氧化还原酶工业应用的关键。通过介绍酶法再生和电化学方法再生的机理 ,分别总结了有关还原态辅酶和氧化态辅酶再生方法的研究现状 ,包括酶学再生过程中涉及到的酶、自由酶和整体细胞再生及其反应器的设计 ;以及电化学再生中电极修饰及中间体选择等。并提出了辅酶再生研究的潜在发展方向  相似文献   

2.
自然界中依赖烟酰胺类辅酶(NAD+或NADP+)的脱氢酶是氧化还原酶中最重要的一类,基于此类酶的生物传感器应用前景广阔,近年来发展迅速。构建这类传感器需要两项关键技术,即氧化型辅酶在电极表面的再生和辅酶固定化。本文介绍了辅酶电化学再生的主要方法、辅酶固定化的常见手段,以及相关的研究进展。  相似文献   

3.
甲醇来源丰富、价格低廉,已成为生物制造行业极具吸引力的底物之一。构建微生物细胞工厂实现甲醇到增值化学品的生物转化,具有过程绿色、条件温和、产品体系多样等优势,不仅能拓展基于甲醇的产品链,还能缓解当前生物制造“与民争粮、与粮争地”的问题,是实现绿色生物制造的重要手段。因此,阐明不同天然甲基营养菌中涉及甲醇氧化、甲醛同化和异化途径对于后续基因工程改造工作至关重要,也更有利于构建新型非天然甲基营养菌。本文讨论了甲基营养菌中甲醇代谢途径的研究现状,并结合近年来天然和人工合成甲基营养菌在甲醇生物转化中的应用进展及面临的挑战。  相似文献   

4.
微生物脱氢酶催化羰基不对称还原制备光学纯氨基酸及其衍生物具有非常大的优势。亮氨酸脱氢酶能选择性地催化α-酮酸,氨化还原得到α-氨基酸及其衍生物。本文综述了亮氨酸脱氢酶的来源,理化性质,底物特异性,酶基因工程菌构建等方面的内容及研究进展。从辅酶再生策略,酶膜反应器两方面讨论了其工业化应用,并展望了今后的发展前景。  相似文献   

5.
微生物脱氢酶催化羰基不对称还原制备光学纯氨基酸及其衍生物具有非常大的优势.亮氨酸脱氢酶能选择性地催化α-酮酸,氨化还原得到α-氨基酸及其衍生物.本文综述了亮氨酸脱氢酶的来源,理化性质,底物特异性,酶基因工程菌构建等方面的内容及研究进展.从辅酶再生策略,酶膜反应器两方面讨论了其工业化应用,并展望了今后的发展前景.  相似文献   

6.
合成生物催化以多酶催化为特征,通过灵活选择不同功能的酶和反应路线设计,可以实现复杂生物基化学品的合成,在反应效率、原子经济性和环境友好方面有着不可替代性。但是其还存在两个关键科学问题:(1)氧化还原酶催化过程中辅酶的循环再生和重复利用;(2)酶在非水相和油水两相反应体系中如何实现稳定。以CO_2合成生物甲醇和天然油脂制备生物聚氨酯材料这两个具有代表性的多酶催化过程为例,介绍了合成生物催化关键科学问题的研究进展。其中,新型纳米材料与生物技术相结合在解决催化体系中辅酶再生、多酶协同以及酶的界面稳定方面有着广阔的发展前景。  相似文献   

7.
辅酶I (nicotinamide adenine dinucleotide, NAD+)作为人体内重要的辅酶,在维持细胞生长、分化和能量代谢以及细胞保护方面起着重要作用。还原型烟酰胺单核苷酸(reduced nicotinamide mononucleotide, NMNH)是一种有效的NAD+增强剂,可以快速、高效地提高组织中NAD+水平。NADH焦磷酸酶可将还原型辅酶I (reduced nicotinamide adenine dinucleotide, NADH)转化为NMNH以促进NAD+的再生。【目的】在枯草芽孢杆菌中构建NADH焦磷酸酶表达体系并实现NMNH的生物转化合成。【方法】通过载体筛选成功在枯草芽孢杆菌WB600中实现NADH焦磷酸酶的胞内表达,结合启动子工程提升其酶活,同时通过培养基优化及5 L发酵罐放大发酵策略进一步考察重组酶的工业应用潜力。在此基础上采用全细胞催化体系进行NMNH的生物转化。【结果】NADH焦磷酸酶的初始表达酶活为1.70 U/mL,NMNH产量为135 mg/L。通过启动子工程化改造,将酶活提升了41%;此外,培养基优化及5 L发酵罐放大发酵策略将酶活进一步提升至5.02 U/mL,较摇瓶水平提升1.09倍;在此基础上采用全细胞催化体系进行NMNH生物转化,获得NMNH产量为1.20 g/L,较初始产量提高了7.88倍。【结论】本研究开发了NADH焦磷酸酶在枯草芽孢杆菌中的高效表达体系,并采用全细胞催化方式实现了NADH到NMNH的高效转化,为NMNH的生物合成提供了新思路。  相似文献   

8.
旨在构建S-亚胺还原酶(S-IRED)和葡萄糖脱氢酶(GDH)在大肠杆菌中的一菌双酶共表达系统,实现辅酶NADPH的再生,高效合成手性仲胺。利用无缝克隆的手段设计构建一种单质粒双启动子共表达系统,以全细胞为催化剂催化手性仲胺S-2-甲基吡咯烷(S-2MP)的合成,并研究温度、pH及有机溶剂对双酶反应的影响。成功构建了S-IRED和GDH的重组共表达质粒,实现了S-IRED与GDH在大肠杆菌中的胞内共表达,以亚胺2-甲基吡咯啉(2MPN)为模式底物,以工程菌全细胞催化手性仲胺S-2MP的合成,在低辅酶添加时催化手性胺的产率和光学纯度均高于95%。该双酶共表达体系的最适温度和pH分别为37℃和pH 8,10%以下的甲醇对双酶反应有正向促进作用。大肠杆菌胞内双酶共表达系统的构建实现了辅酶NADPH的原位再生,降低了亚胺还原酶催化合成手性胺的成本,为手性胺的规模制备奠定了基础。  相似文献   

9.
氧化还原生物合成体系在绿色生物制造手性化合物中具有重要应用价值.甲酸脱氢酶(formate dehydrogenase,FDH)能氧化甲酸盐生成二氧化碳,同时将NAD(P)+还原为NAD(P)H,是氧化还原生物合成中辅酶再生体系的关键酶.但天然的FDH催化效率低、稳定性差、辅酶利用率不高等缺点制约了其在工业生产中的应用...  相似文献   

10.
简要分析了植酸酶的生物学特性以及构建植酸酶基因工程菌和酶生产应用中存在的问题,提出了对植酸酶基因的重组改造、载体表达宿主筛选的方法和途径,以求构建高效表达、高活性和高稳定性的酶基因工程菌,促进酶的生产和应用。  相似文献   

11.
为开发催化4-氯乙酰乙酸乙酯(COBE)制备(R)-4-氯-3-羟基丁酸乙酯((R)-CHBE)的新型催化剂,挖掘到了来自白色念珠菌SC5314中的一种NADPH辅酶依赖型醛酮还原酶CAK基因(cak),并将该基因在大肠杆菌中表达。将重组酶进行纯化后,测定其酶学性质,并构建了以葡萄糖为辅底物的双酶偶联辅酶再生系统,考察其不对称转化制备(R)-CHBE的能力。结果表明:CAK对多种醛酮类化合物有催化活性,其催化COBE的最适反应温度为40℃,最适p H为5。CAK在40℃下以及酸性条件中能保持较好的稳定性。Mg2+、Na+、K+对酶活有一定的激活作用,而Cu2+存在条件下酶会彻底失活。乙酸乙酯、邻苯二甲酸二丁酯对酶活的抑制作用较小。利用双酶偶联辅酶再生系统不对称转化制备(R)-CHBE。在合适的条件下,转化600 mmol/L的底物,产率达80.6%,产物对映体过量值(e.e.值)99%。  相似文献   

12.
为了进一步认识立体选择性转化用菌株近平滑假丝酵母(Candida parapsilosis)SYB-1的转化机理及其转化酶系的酶学特性,考察了该菌种来源的粗酶的辅酶依赖型及立体选择性,发现依赖于辅酶NADP ,该酶将(R)-苯基乙二醇氧化为β-羟基苯乙酮;而依赖于辅酶NADH,该酶不对称还原β-羟基苯乙酮为(S)-苯基乙二醇。在研究该粗酶酶学特性后发现该粗酶对5C的伯醇专一性较强;在包括仲醇和二元醇的手性醇中,对于二元醇的专一性较强;而在还原反应中对2-丁酮专一性较强。金属螯合剂及重金属离子会对该粗酶的活力产生抑制作用。该粗酶催化氧化的最适pH为8.0,最适温度为50℃;催化还原的最适pH为6.0,最适温度为40℃。  相似文献   

13.
辅酶NAD(H)相比NADP(H)有稳定性好、价格低廉及更广的辅酶循环方法等优势,因此在实际应用中常需将NADP(H)依赖型的脱氢酶改造成为NAD(H)依赖型的。来源于嗜热共生杆菌Symbiobacterium thermophilum的NADP(H)依赖型内消旋-2,6-二氨基庚二酸脱氢酶(meso-2,6-diaminopimelate dehydrogenase,St DAPDH)及其突变体酶是催化还原氨化合成D-氨基酸的优良催化剂,本研究试图改变其辅酶偏好性,增强其应用优势。对其晶体结构分析可知,氨基酸残基Y76距离腺嘌呤较近,R35及R36和辅酶上磷酸基团有直接相互作用。依氨基酸侧链基团性质对Y76进行了定点突变,发现不同突变子对两种辅酶的偏好性都发生了变化;对与磷酸基团直接作用的R35、R36进行的双突变R35S/R36V,导致酶对NADP+的催化活力降低;将R35S/R36V和部分Y76突变进行了组合,发现三突变组合以NAD+为辅酶时的活力均大于以NADP+为辅酶的活力,实现了辅酶偏好性转变。这些研究工作为进一步实现St DAPDH的辅酶偏好性完全转变提供依据。  相似文献   

14.
人工光合作用是通过模拟自然光合作用将太阳能转变为化学能的过程,其研究领域主要集中在水裂解、CO_2固定和辅酶再生这三方面。辅酶是大部分氧化还原酶催化反应中的关键辅助因子,在工业生产中用量极大,具有十分重要的价值。然而,辅酶的生产和提纯成本极高,导致其价格高昂,应用受阻。人工光合作用可以利用太阳能进行辅酶再生,有望通过辅酶循环利用的方法降低工业中生物催化反应成本。本文中,笔者系统地阐述人工光合作用及辅酶再生的机制,总结近年来用于辅酶再生的人工光合系统的研究进展,并对人工光合作用在辅酶再生领域的未来趋势进行展望。  相似文献   

15.
【目的】克隆丙酮丁醇梭状芽胞杆菌(Clostridium acetobutylicum)ATCC824丁醇合成途径关键酶基因,构建产丁醇的工程大肠杆菌。【方法】以C.acetobutylicum ATCC824基因组为模板,分别扩增丁醇合成途径关键酶基因thil,adhE2和BCS operon(crt-bcd-etfB-etfA-hbd)基因序列,构建BCS operon-adhE2-thil/pTrc99a/MG1655(pBAT)。重组菌E.coli pBAT采用0.1 mmol异丙基-β-硫代半乳糖苷(IPTG)诱导5 h,测定乙酰基转移酶(THL)、3-羟基丁酰辅酶A脱氢酶(HBD)、3-羟基丁酰辅酶A脱水酶(CRT)、丁酰辅酶A脱氢酶(BCD)、醛醇脱氢酶(BYDH/BDH)的酶活。并以该基因工程菌作为发酵菌种,采用好氧、厌氧和微好氧三种培养方式,检测丁醇产量。【结果】酶活测定结果显示:THL酶活达到0.160 U/mg protein,酶活力提高了近30倍;HBD酶活力提高了近5倍;CRT酶活达到1.53 U/mg protein,野生菌株无此酶活;BCD酶活力提高了32倍;BYDH/BDH酶活力无显著提高。3种发酵培养结果显示在微好氧和厌氧条件下,均有丁醇产生,且丁醇的最大产量约为84 mg/L。【结论】本实验通过构建产丁醇基因工程大肠杆菌,实现了丁醇关键酶基因在大肠杆菌中的活性表达以及发酵产丁醇,为发酵法生产丁醇开辟了一条新的途径。  相似文献   

16.
【背景】醇脱氢酶AdhS能催化不对称还原反应制备(R)-2-氯-1-苯乙醇,但由于自身再生辅酶NADH的能力不足,需要辅酶再生酶协助其再生NADH。谷氨酸脱氢酶能以谷氨酸为底物,再生辅酶NAD(P)H,具有辅酶再生酶的潜力。【目的】克隆表达谷氨酸脱氢酶基因gdhA,构建谷氨酸脱氢酶GdhA与醇脱氢酶AdhS的大肠杆菌共表达体系,提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。【方法】从枯草芽孢杆菌(Bacillus subtilis) 168中克隆基因gdhA,并在大肠杆菌(Escherichia coli) BL21(DE3)中表达,分析辅酶再生活力;再与醇脱氢酶AdhS共表达,优化表达条件;分析不同辅酶再生方案对制备(R)-2-氯-1-苯乙醇的转化效率的影响。【结果】谷氨酸脱氢酶GdhA再生NADH的比活力为694 U/g。经GdhA与AdhS的共表达及表达条件优化后,制备(R)-2-氯-1-苯乙醇的转化效率达465 U/L。经比较,GdhA协助再生辅酶NADH,可使AdhS制备(R)-2-氯-1-苯乙醇的转化效率提高到约3倍。【结论】谷氨酸脱氢酶GdhA为NADH高效再生酶,与醇脱氢酶AdhS共表达可显著提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。  相似文献   

17.
弱氧化葡糖杆菌ddsA基因在大肠杆菌不同宿主菌中的表达   总被引:4,自引:0,他引:4  
泛醌(辅酶Q)在生物体氧化呼吸链中作为重要的质子和电子传递物质。聚十异戊烯焦磷酸合成酶催化辅助酶Q10的侧链的生物合成。为了获得高产辅助酶Q10的菌株,将选择了10种不同大肠杆菌宿主菌用于弱氧化葡糖杆菌的聚十异戊烯焦磷酸合成酶基因ddsA的表达,通过产物分析证实该基因能在大肠杆菌中表达出有活性的聚十异戊烯焦磷酸合成酶,使大肠杆菌合成了辅酶Q10。此外,还发现在Escherichia coli HB101这一菌株中,ddsA的表达使辅酶Q10的产量略超过了在野生型中占主导地位的辅酶Q8的产量。该结果证明了利用大肠杆菌大规模发酵生产辅酶Q10的可能性。  相似文献   

18.
假单胞菌酶法转化DL-ATC合成L-半胱氨酸   总被引:2,自引:0,他引:2  
采用微生物酶转化法制备L-半胱氨酸具有周期短、成本低、区域和立体选择性强、反应条件容易控制、环境友好等特点,与传统的毛发水解以及化学合成工艺相比显示出明显的优越性。本文从假单胞菌产酶条件和酶学性质、DL-ATC生物转化途径、固定化细胞转化工艺、基因工程菌的研究、以及L-半胱氨酸脱巯基酶的研究等5个方面介绍了国内外关于生物转化DL-2-氨基-Δ2-噻唑啉-4-羧酸(DL-ATC)合成L-半胱氨酸的研究进展。  相似文献   

19.
杨兴龙  穆晓清  聂尧  徐岩 《微生物学报》2016,56(11):1709-1718
【目的】通过不同双基因共表达策略对亮氨酸脱氢酶和葡萄糖脱氢酶基因在大肠杆菌中表达影响的研究,获得具有高辅酶再生效率的双酶共表达重组生物催化剂,实现L-叔亮氨酸"一锅法"高效不对称合成。【方法】以来自于蜡状芽孢杆菌(Bacillus cereus)的亮氨酸脱氢酶(LDH)和来自芽孢菌属(Bacillus sp.)的葡萄糖脱氢酶(GDH)为模板,考察单质粒共表达,双质粒共表达和融合表达等3种共表达策略对重组细胞中亮氨酸脱氢酶和葡萄糖脱氢酶活的影响,比较不同酶活比例和不同催化剂形式对三甲基丙酮酸不对称还原制备L-叔亮氨酸效率的影响。【结果】研究发现不同共表达策略对亮氨酸脱氢酶和葡萄糖脱氢酶的影响存在明显差异。亮氨酸脱氢酶在不同策略下均能够正常表达,而葡萄糖脱氢酶在融合表达时没有活力,当C端含有组氨酸标签时,表达蛋白活性低。通过表达优化,获得3株亮氨酸脱氢酶和葡萄糖脱氢酶高效表达且具有不同酶活比例的重组菌。比较粗酶液和全细胞形式下的催化效率,发现酶活比例及催化剂形式对不对称还原反应效率具有重要影响。确定单质粒串联表达C端不含His标签重组菌E.coli BL21/p ET28a-L-SD-AS-G为最佳催化剂,以粗酶液进行转化时,完全转化0.5 mol/L底物所需菌体量为15 g/L,辅酶量为0.1 mmol/L。【结论】采用单质粒共表达策略,成功构建出1株具有较高亮氨酸脱氢酶和葡萄糖脱氢酶活性的重组菌,实现高效催化TMP合成L-Tle。  相似文献   

20.
乙酰辅酶A被广泛应用到生物医学研究中,使用TPP代替昂贵的ATP为辅因子合成乙酰辅酶A受到广泛关注.新阿波罗栖热袍菌(Thermotoga neapolitana)来源的丙酮酸:铁氧还蛋白氧化还原酶(TnPFOR)在大肠杆菌中进行了重组表达,分析了其酶学特性,并探讨了利用嗜热酶(TnPFOR)酶法合成乙酰辅酶A.采用pET-20b(+)载体,将新阿波罗栖热袍菌来源的四亚基组成的嗜热酶(TnPFOR)在大肠杆菌中进行异源表达;通过热处理和阴离子交换层析法纯化嗜热酶(TnPFOR);重组表达的嗜热酶(TnPFOR)的最适反应温度和pH分别为90℃和6.5,TnPFOR在90℃下孵育1h时保留了50%活性.利用嗜热酶(TnPFOR),以TPP为辅酶合成了乙酰辅酶A,并探讨了不同温度,丙酮酸钠底物浓度和反应时间对乙酰辅酶A合成的影响.得到的优化条件为:最适反应温度为90℃,丙酮酸钠浓度为1.5mmol/L,反应时间为2min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号