首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth-blocking peptide (GBP) is a 25-amino acid insect cytokine found in Lepidopteran insects that possesses diverse biological activities such as larval growth regulation, cell proliferation, and stimulation of immune cells (plasmatocytes). The tertiary structure of GBP consists of a structured core that contains a disulfide bridge and a short antiparallel beta-sheet (Tyr(11)-Arg(13) and Cys(19)-Pro(21)) and flexible N and C termini (Glu(1)-Gly(6) and Phe(23)-Gln(25)). In this study, deletion and point mutation analogs of GBP were synthesized to investigate the relationship between the structure of GBP and its mitogenic and plasmatocyte spreading activity. The results indicated that deletion of the N-terminal residue, Glu(1), eliminated all plasmatocyte spreading activity but did not reduce mitogenic activity. In contrast, deletion of Phe(23) along with the remainder of the C terminus destroyed all mitogenic activity but only slightly reduced plasmatocyte spreading activity. Therefore, the minimal structure of GBP containing mitogenic activity is 2-23 GBP, whereas that with plasmatocyte spreading activity is 1-22 GBP. NMR analysis indicated that these N- and C-terminal deletion mutants retained a similar core structure to wild-type GBP. Replacement of Asp(16) with either a Glu, Leu, or Asn residue similarly did not alter the core structure of GBP. However, these mutants had no mitogenic activity, although they retained about 50% of their plasmatocyte spreading activity. We conclude that specific residues in the unstructured and structured domains of GBP differentially affect the biological activities of GBP, which suggests the possibility that multifunctional properties of this peptide may be mediated by different forms of a GBP receptor.  相似文献   

2.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine isolated from the lepidopteran insect Pseudaletia separata. GBP exhibits various biological activities such as regulation of larval growth of insects, proliferation of a few kinds of cultured cells, and stimulation of a class of insect immune cells called plasmatocytes. The tertiary structure of GBP consists of a well structured core domain and disordered N and C termini. Our previous studies revealed that, in addition to the structured core, specific residues in the unstructured N-terminal region (Glu1 and Phe3) are also essential for the plasmatocyte-stimulating activity. In this study, a number of deletion, insertion, and site-directed mutants targeting the unstructured N-terminal residues of GBP were constructed to gain more detailed insight into the mode of interaction between the N-terminal region and GBP receptor. Alteration of the backbone length of the linker region between the core structure and N-terminal domain reduced plasmatocyte-stimulating activity. The substitutions of Gly5 or Gly6 in this linker region with more bulky residues, such as Phe and Pro, also remarkably reduced this activity. We conclude that the interaction of GBP with its receptor depends on the relative position of the N-terminal domain to the core structure, and therefore the backbone flexibility of Gly residues in the linker region is necessary for adoption of a proper conformation suited to receptor binding. Additionally, antagonistic experiments using deletion mutants confirmed that not only the core domain but also the N-terminal region of GBP are required for "receptor-binding," and furthermore Phe3 is a binding determinant of the N-terminal domain.  相似文献   

3.
Plasmatocyte-spreading peptide (PSP) is a 23-amino acid cytokine that activates a class of insect immune cells called plasmatocytes. The tertiary structure of PSP consists of an unstructured N terminus (residues 1-6) and a well structured core (residues 7-23). A prior study indicated that deletion of the N terminus from PSP eliminated all biological activity. Alanine substitution of the first three residues (Glu(1)-Asn(2)-Phe(3)) further indicated that only replacement of Phe(3) resulted in a loss of activity equal to the N-terminal deletion mutant. Here, we characterized structural determinants of the N terminus. Adding a hydroxyl group to the aromatic ring of Phe(3) (making a Tyr) greatly reduced activity, whereas the addition of a fluorine (p-fluoro) did not. Substitutions that changed the chirality or replaced the aromatic ring of Phe(3) with a branched aliphatic chain (making a Val) also greatly decreased activity. The addition of a methylene group to Val (making a Leu) partially restored activity, whereas the removal of a methylene group from Phe (phenyl-Gly) eliminated all activity. These results indicated that a branched carbon chain with a methylene spacer at the third residue is the minimal structural motif required for activity. The deletion of Glu(1) also eliminated activity. Additional experiments identified the charged N-terminal amine and backbone of Glu(1) as key determinants for activity.  相似文献   

4.
In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.  相似文献   

5.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

6.
Growth-blocking peptide (GBP) is a hormone-like peptide that suppresses the growth of the host armyworm. Although the 23-amino acid GBP (1–23 GBP) is expressed in nonparasitized armyworm plasma, the parasitization by wasp produces the 28-amino acid GBP (1–28 GBP) through an elongation of the C-terminal amino acid sequence. In this study, we characterized the GBP variants, which consist of various lengths of the C-terminal region, by comparing their biological activities and three-dimensional structures. The results of an injection study indicate that 1–28 GBP most strongly suppresses larval growth. NMR analysis shows that these peptides have basically the same tertiary structures and that the extension of the C-terminal region is disordered. However, the C-terminal region of 1–28 GBP undergoes a conformational transition from a random coiled state to an α-helical state in the presence of dodecylphosphocholine micelles. This suggests that binding of the C-terminal region would affect larval growth activity.Growth-blocking peptide (GBP)2 was initially identified from the hemolymph of armyworm Pseudaletia separata as a 25-amino acid peptide (1–25 GBP) that prevents the onset of pupation of the host by parasitization of wasp Cotesia kariyai (14). Injection of GBP into nonparasitized armyworm larvae early in the last instar delays larval growth and retards pupation for more than a few days. Our previous studies showed that GBP is a hormone-like biogenic peptide of the host armyworm (5, 6). In nonparasitized larvae, the concentrations of GBP were much higher in the early larval stages than in the latter ones. However, parasitization by wasp induces an elevation of GBP in the last larval stages. This elevation was shown to lead to growth retardation via repression of juvenile hormone esterase activity (79). Interestingly, a cDNA analysis indicated that the cDNA encodes a 23-amino acid GBP (1–23 GBP), although GBP purified from parasitized armyworm plasma consists of 25 amino acid residues. GBP was expressed as a 23-residue peptide (1–23 GBP) in nonparasitized armyworm larvae, whereas 1–25 GBP, containing Tyr24 and Gln25, was purified from the parasitized larvae. Moreover, the preliminary peptide sequencing of GBP prepared from parasitized larval hemolymph showed the 26th and 27th residues on rare occasions (Leu and Ile, respectively) (6). On the basis of these results, we concluded that the TAG stop codon for the 24th amino acid was unusually decoded as Tyr upon parasitization by parasitoid wasps (10) and predicted that an intact and mature GBP synthesized in the parasitized armyworm larvae would consist of 28 amino acid residues (1–28 GBP).GBP has multiple functions: adhesion and spreading of a specific class of immune cells (plasmatocytes), proliferation of various cultured cells, and induction of larval paralysis (1113). More than 10 GBP homologous peptides have been identified in Lepidopteran insects, and based on their N-terminal consensus sequences (Glu1-Asn2-Phe3), they have been categorized as the ENF peptide family (14). The tertiary structure of 1–25 GBP consists of a disordered N-terminal region (residues Glu1–Gly6), a well ordered core region (residues Cys7–Thr22) stabilized by a disulfide bond and a short antiparallel β-sheet, and a short unstructured C-terminal region (Phe23–Glu25) (15). Because no GBP receptor or its gene has been isolated yet, the nature of either of them at the cellular and molecular levels is poorly understood at present. In contrast, the relationship between the structure and activity of GBP has been well studied by analyzing the biological activities of several variants of GBP and plasmatocyte-spreading peptide (one of the ENF family peptides). Especially, extensive studies on the N termini (residues 1–6) of GBP and plasmatocyte-spreading peptide demonstrated the importance of Phe3 for exerting their hemocyte stimulating activity, thereby suggesting a possible mechanism for receptor activation that requires binding of the aromatic ring of Phe3 and a closely spaced primary amine with receptor activating properties (1619).In contrast, the C termini of GBP and other ENF peptides have received less attention, because of the weak secondary structure predictions. Therefore, in this study we focused on the C terminus region of GBP and analyzed its contribution to the expression of some biological activities and to the tertiary structure of this peptide. Especially, we prepared GBP with 28 amino acids and characterized the C-terminal region of 1–28 GBP (residues Phe23–Thr28), because we knew that GBP is present as a 23-amino acid peptide in nonparasitized healthy larvae and that GBP with 28 amino acids has been found only in parasitized host larvae. Our results suggest that the elongation of the C-terminal region of Phe23–Thr28 greatly reinforced GBP binding with the membrane. Further, the elongation increased GBP inhibition of larval growth.  相似文献   

7.
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min.An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression.  相似文献   

8.
We constructed nine deletion mutants of NAD+-dependent DNA ligase from Aquifex pyrophilus to characterize the functional domains. All of DNA ligase deletion mutants were analyzed in biochemical assays for NAD+-dependent self-adenylation, DNA binding, and nick-closing activity. Although the mutant lsub1 (91-362) included the active site lysine (KxDG), self-adenylation was not shown. However, the mutants lsub6 (1-362), lsub7 (1-516), and lsub9 (1-635) showed the same adenylation activity as that of wild type. The lsub5 (91-719), which has the C-terminal domain (487-719) as to lsub4 (91-486), showed minimal adenylation activity. These results suggest that the presence of N-terminal 90 residues is essential for the formation of an enzyme-AMP complex, while C-terminal domain (487-719) appears to play a minimal role in adenylation. It was found that the presence of C-terminal domain (487-719) is indispensable for DNA binding activity of lsub5 (91-719). The mutant lsub9 (1-635) showed reduced DNA binding activity compared to that of wild type, suggesting the contribution of the domain (636-719) for the DNA binding activity. Thus, we concluded that the N-terminal 90 residues and C-terminal domain (487-719) of NAD+-dependent DNA ligase from A. pyrophilus are mutually indispensable for binding of DNA substrate.  相似文献   

9.
《Process Biochemistry》2010,45(5):786-793
VP2 is the primary host-protective immunogen of infectious bursal disease virus (IBDV), the agent that causes the highly contiguous infectious bursal disease (IBD). Previous studies have shown that a C-terminal his-tagged 452 amino acid residue VP2 precursor variant (VP2-452H) can form an immunogenic subviral particle (SVP). A set of his-tagged N- and C-terminal VP2-452 deleting mutants (designated as N5-452H, N10-452H, N20-452H, N40-452H, VP2-441H, VP2-437H, VP2-411H and VP2-399H) was expressed in insect cells to discover the role of both N- and C-termini on the assembly of SVP and to develop an efficient SVP-based vaccine. Among these mutants, the expression level of N5-452H was the highest. Results of ultracentrifugation and electron microscopy also indicated that mutants of N-terminal deletion N10-452H, N20-452H and N40-452H or C-terminal deletion VP2-411H and VP2-399H lost the capability to self-assemble SVP. The other mutants, N5-452H, VP2-441H and VP2-437H, formed SVP. Additionally, SVP formed by N5-452H could not only be single-step purified by immobilized metal-ion affinity chromatography (IMAC), but it could also induce a high titer of neutralizing activity to protect chicks from the infection of IBDV at a low dosage (0.2 μg), suggesting that SVP formed by N5-452H can be an alternative vaccine candidate for the prevention of IBD.  相似文献   

10.
Plasmatocyte-spreading peptide (PSP) is a 23-amino acid cytokine that activates a class of insect immune cells called plasmatocytes. PSP consists of two regions: an unstructured N terminus (1-6) and a highly structured core (7-23). Prior studies identified specific residues in both the structured and unstructured regions required for biological activity. Most important for function were Arg13, Phe3, Cys7, Cys19, and the N-terminal amine of Glu1. Here we have built on these results by conducting cell binding and functional antagonism studies. Alanine replacement of Met12 (M12A) resulted in a peptide with biological activity indistinguishable from PSP. Competitive binding experiments using unlabeled and 125I-M12A generated an IC50 of 0.71 nm and indicated that unlabeled M12A, at concentrations > or =100 nm, completely blocked binding of label to hemocytes. We then tested the ability of other peptide mutants to displace 125I-M12A at a concentration of 100 nm. In the structured core, we found that Cys7 and Cys19 were essential for cell binding and functional antagonism, but these effects were likely because of the importance of these residues for maintaining the tertiary structure of PSP. Arg13, in contrast, was also essential for binding and activity but is not required for maintenance of structure. In the unstructured N-terminal region, deletion of the phenyl group from Phe3 yielded a peptide that reduced binding of 125I-M12A 326-fold. This and all other mutants of Phe3 we bioassayed were unable to antagonize PSP. Deletion of Glu1 in contrast had almost no effect on binding and was a strong functional antagonist. Experiments using a photoaffinity analog indicated that PSP binds to a single 190-kDa protein.  相似文献   

11.
The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis . A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2 , are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT:: Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represent a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis , and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.  相似文献   

12.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

13.
Growth-blocking peptide (GBP) is a small (25 amino acids) insect cytokine with a variety of functions: controlling the larval development of lepidopteran insects, acting as a mitogen for various types of cultured cells, and stimulating insect blood cells. The aromatic residues of GBP (Phe-3, Tyr-11, and Phe-23) are highly conserved in the ENF peptide family found in lepidopteran insects. We investigated the relationship between the biological activities and structural properties of a series of GBP mutants, in which each of the three aromatic residues is replaced by a different residue. The results of the hemocytes-stimulating assays of GBP mutants indicated that Phe-3 is the key residue in this activity: Ala or Tyr replacement resulted in significant loss of the activity, but Leu replacement did not. The replacements of other aromatic residues hardly affected the activity. On the other hand, NMR analysis of the mutants suggested that Tyr-11 is a key residue for maintaining the core structure of GBP. Surprisingly, the Y11A mutant maintained its biological activity, although its native-like secondary structure was disordered. Detailed analyses of the (15)N-labeled Y11A mutant by heteronuclear NMR spectroscopy showed that the native-like beta-sheet structure of Y11A was induced by the addition of 2,2,2-trifluoroethanol. The results suggest that Y11A has a tendency to form a native-like structure, and this property may give the Y11A mutant native-like activity.  相似文献   

14.
Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions. IGFBP-5 is also found in the nuclei of cultured cells and has transactivation activity. Here we report the nuclear localization of endogenous IGFBP-5 in mouse embryonic skeletal cells. Chromatin immunoprecipitation experiments indicated that IGFBP-5 interacts with the nuclear histone-DNA complex. Using a series of deletion mutants, the transactivation domain of IGFBP-5 was mapped to its N-terminal region. Intriguingly, the transactivation activity of IGFBP-5 is masked by negative regulatory elements located in the L- and C-domains. Among the other IGFBPs, the N-domains of IGFBP-2 and -3 also had strong transactivation activity, whereas those of IGFBP-1 and -6 had no activity. The IGFBP-4 N-domain had modest activity. Sequence analysis revealed several amino acids in the IGFBP-5 N-domain that are not present in IGFBP-1. The activities of mutants in which these residues were changed to the corresponding IGFBP-1 sequence were determined. Mutations that changed acidic residues to neutral residues (e.g. E8A, D11S, E12A, E30S/P31A, E43L, and E52A) or a polar to a basic residue (e.g. Q56R) significantly reduced transactivation activity. The E8A/D11S/E12A triple mutant and E52A/Q56R double mutants showed further reduced activity. The combinatory mutants had essentially no transactivation activity. Taken together, our results indicate that there are several conserved residues in the IGFBP-5 N-terminal region that are critical for transactivation and that IGFBP-2 and -3 also have strong transactivation activity in their N-domains.  相似文献   

15.
An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion glycoproteins.  相似文献   

16.
How the ATPase activity of Heat shock protein 90 (Hsp90) is coupled to client protein activation remains obscure. Using truncation and missense mutants of Hsp90, we analysed the structural implications of its ATPase cycle. C-terminal truncation mutants lacking inherent dimerization displayed reduced ATPase activity, but dimerized in the presence of 5'-adenylamido-diphosphate (AMP-PNP), and AMP-PNP- promoted association of N-termini in intact Hsp90 dimers was demonstrated. Recruitment of p23/Sba1 to C-terminal truncation mutants also required AMP-PNP-dependent dimerization. The temperature- sensitive (ts) mutant T101I had normal ATP affinity but reduced ATPase activity and AMP-PNP-dependent N-terminal association, whereas the ts mutant T22I displayed enhanced ATPase activity and AMP-PNP-dependent N-terminal dimerization, indicating a close correlation between these properties. The locations of these residues suggest that the conformation of the 'lid' segment (residues 100-121) couples ATP binding to N-terminal association. Consistent with this, a mutation designed to favour 'lid' closure (A107N) substantially enhanced ATPase activity and N-terminal dimerization. These data show that Hsp90 has a molecular 'clamp' mechanism, similar to DNA gyrase and MutL, whose opening and closing by transient N-terminal dimerization are directly coupled to the ATPase cycle.  相似文献   

17.
Paralytic peptide of Bombyx mori (BmPP) is one of the multifunctional ENF-peptides; the name of “ENF” is the consensus N-terminal amino acid sequence of the family peptides. We revealed that BmPP significantly possesses growth-blocking activity and plasmatocyte-spreading activity and that its activity profiles are different from those of another ENF-family peptide, namely, the growth-blocking peptide of Pseudaletia separata (PsGBP). We also determined the NMR structures of BmPP and PsGBP under the same conditions, which revealed the structural differences of the first and second β-turn regions between the two peptides. On the basis of our results, it can be considered that the tertiary structural difference in these peptides may cause their different profiles of growth-blocking activity.  相似文献   

18.
Insect cytokine, growth-blocking peptide (GBP), enhances cell proliferation of human keratinocyte cells with a potency almost equivalent to that of human epidermal growth factor (EGF). GBP consists of 25 amino acid residues containing a core region that shows a striking similarity to the C-terminal beta-loop domain of EGF and disordered N and C termini. The present study demonstrates that, although GBP lacks the N-terminal half-portion of EGF molecule, at least five amino acids of the disordered N-terminal six-amino acid region are indispensable for affecting the cell growth activity of GBP. Upon stimulating mitogenesis in keratinocyte cells, GBP directly binds and activates their EGF receptors. GBP also effects proliferative activity on insect Sf9 cells through the binding and activation of the specific receptor, which consists of a heterodimeric complex: a binding subunit (60 kDa) and a tyrosine phosphorylation subunit (58 kDa). These results indicate that GBP enhances cell proliferation of human keratinocyte and insect Sf9 cells through the activation of EGF and GBP receptors, respectively.  相似文献   

19.
20.
Annexins (ANXs) display regulatory functions in diverse cellular processes, including inflammation, immune suppression, and membrane fusion. However, the exact biological functions of ANXs still remain obscure. Inhibition of phospholipase A(2) (PLA(2)) by ANX-I, a 346-amino acid protein, has been observed in studies with various forms of PLA(2). "Substrate depletion" and "specific interaction" have been proposed for the mechanism of PLA(2) inhibition by ANX-I. Previously, we proposed a specific interaction model for inhibition of a 100-kDa porcine spleen cytosolic form of PLA(2) (cPLA(2)) by ANX-I (Kim, K. M., Kim, D. K., Park, Y. M., and Na, D. S. (1994) FEBS Lett. 343, 251-255). Herein, we present an analysis of the inhibition mechanism of cPLA(2) by ANX-I in detail using ANX-I and its deletion mutants. Deletion mutants were produced in Escherichia coli, and inhibition of cPLA(2) activity was determined. The deletion mutant ANX-I-(1-274), containing the N terminus to amino acid 274, exhibited no cPLA(2) inhibitory activity, whereas the deletion mutant ANX-I-(275-346), containing amino acid 275 to the C terminus, retained full activity. The protein-protein interaction between cPLA(2) and ANX-I was examined using the deletion mutants by immunoprecipitation and mammalian two-hybrid methods. Full-length ANX-I and ANX-I-(275-346) interacted with the calcium-dependent lipid-binding domain of cPLA(2). ANX-I-(1-274) did not interact with cPLA(2). Immunoprecipitation of A549 cell lysate with anti-ANX-I antibody resulted in coprecipitation of cPLA(2). These results are consistent with the specific interaction mechanism rather than the substrate depletion model. ANX-I may function as a negative regulator of cPLA(2) in cellular signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号