首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High-Rate Anaerobic Treatment of Wastewater at Low Temperatures   总被引:2,自引:0,他引:2       下载免费PDF全文
Anaerobic treatment of a volatile fatty acid (VFA) mixture was investigated under psychrophilic (3 to 8°C) conditions in two laboratory-scale expanded granular sludge bed reactor stages in series. The reactor system was seeded with mesophilic methanogenic granular sludge and fed with a mixture of VFAs. Good removal of fatty acids was achieved in the two-stage system. Relative high levels of propionate were present in the effluent of the first stage, but propionate was efficiently removed in the second stage, where a low hydrogen partial pressure and a low acetate concentration were advantageous for propionate oxidation. The specific VFA-degrading activities of the sludge in each of the modules doubled during system operation for 150 days, indicating a good enrichment of methanogens and proton-reducing acetogenic bacteria at such low temperatures. The specific degradation rates of butyrate, propionate, and the VFA mixture amounted to 0.139, 0.110, and 0.214 g of chemical oxygen demand g of volatile suspended solids−1 day−1, respectively. The biomass which was obtained after 1.5 years still had a temperature optimum of between 30 and 40°C.  相似文献   

2.
The characteristics and development of thermophilic anaerobic sludge in upflow staged sludge bed (USSB) reactors were studied. The compartmentalized reactors were inoculated with partially crushed mesophilic granular sludge and then fed with either a mixture of volatile fatty acids (VFA) or a mixture of sucrose and VFA. The staged degradation of the soluble substrate in the various compartments led to a clear segregation of specific types of biomass along the height of the reactor, particularly in reactors fed with the sucrose-VFA mixture. Both the biological as well as the physical properties of the cultivated sludge were affected by the fraction of nonacidified substrate. The sludge in the first compartment of the reactor treating the sucrose-VFA mixture was whitish and fluffy, most likely resulting from the development of acidifying bacteria. Sludge granules which developed in the top part of this reactor possessed the highest acetogenic and methanogenic activity and the highest granule strength as well. The experiments also revealed that the conversion of the sucrose-VFA mixture into methane gradually deteriorated at prolonged operation at high organic loading rates (50 to 100 g COD . L(-1) . day(-1)). Stable long-term performance of a reactor can only be achieved by preserving the sludge segregation along the height of the reactor. In the reactor fed solely with the VFA mixture little formation of granular sludge occurred. In this reactor, large differences in sludge characteristics were also observed along the reactor height. Li(+)-tracer experiments indicated that the hydraulic regime in the USSB reactor is best characterized by a series of at least five completely mixed reactors. The formation of granular sludge was found to influence the liquid flow pattern. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

4.
Two identical 31 completely mixed reactors with solids recycling capabilities were used to investigate the effects of hydraulic retention time (HRT) and low temperatures on volatile fatty acid (VFA) production. One reactor was fed with a 1:1 ratio of diluted primary sludge and a starch-rich industrial wastewater, while the other was fed with diluted primary sludge alone. The VFA and soluble COD concentrations and specific production rates reached their highest values at 30 h HRT and at 25 degrees C. Further increase in HRT (at 25 degrees C) or decrease in temperature (at an HRT of 30 h) resulted in lower amounts of VFA and COD produced. All parameters related to VFA and COD production were significantly higher in the industrial-municipal reactor than in the municipal-only reactor. The VFA:COD ratios were very high, with values ranging from about 0.8 to 1.0 indicating that hydrolysis was the rate-limiting step. Degradation of proteins (measured by ammonia production) was inhibited by the starch-rich wastewater in the industrial-municipal reactor, while no evidence of inhibition was found in the municipal-only reactor. This study revealed that VFA production was feasible at low temperatures (down to 8 degrees C), particularly in the presence of the industrial waste. Ultimately, the amount VFA produced was adequate, in most cases, to support subsequent biological nutrient removal (BNR) processes.  相似文献   

5.
The anaerobic transformation and degradation of nitrophenols by granular sludge was investigated in upflow anaerobic sludge blanket (UASB) reactors continuously fed with a volatile fatty acid (VFA) mixture as the primary substrate. During the start-up, subtoxic concentrations of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2, 4-dinitrophenol (2, 4-DNP) were utilized. 4-NP and 2, 4-DNP were readily converted to the corresponding aromatic amine; whereas 2-NP was converted to nonaromatic products via intermediate formation of 2-aminophenol (2-AP). These conversions led to a dramatic detoxification of the mononitrophenols because the reactors treated the nitrophenolics at the concentrations which were over 25 times higher than those that caused severe inhibition. VFA removal efficiencies greater than 99% were achieved in both reactors at loading rates greater than 11.4 g COD per liter of reactor volume per day even at volumetric loading of mononitrophenols up to 910 mg/L . d.The sludges obtained from each of the reactors at the end of the continuous experiments were assayed for their specific nitrophenol reducing activity in the presence of different primary substrates. Reduction rates of 45 and 26 mg/g volatile suspended solids per day were observed for 2-NP and 4-NP, respectively, when utilizing the VFA mixture as primary substrate. Hydrogen, an interspecies-reduced compound, and substrates that provide interspecies-reducing equivalents-such as butyrate, propionate, and ethanol stimulated nitrophenol reduction, whereas acetate and methanol did not. Anaerobic batch biodegradability tests with the 2-NP-adapted sludge revealed that its corresponding aromatic amine, 2-AP, was degraded to methane at a specific rate of 14.5 mg/g VSS . d. Acetate was observed to be the major intermediate during 2-AP degradation in the presence of a specific methanogenic inhibitor 2-bromoethanesulfonate. The results of this study indicate that UASB reactors can be applied to rapidly detoxify and, under certain circumstances, degrade nitroaromatic compounds. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB.  相似文献   

7.
The influence of a high energy substrate, i.e. sucrose, on the granular sludge yield and the development of different types of granular sludge was investigated by using Upflow Anaerobic Sludge Bed (UASB) reactors fed with synthetic wastewater. The feed COD was a mixture of volatile fatty acids (VFA) i.e., 20, 40, and 40% of the COD as C2-, C3-, and C4-VFA, respectively. Furthermore, experiments were carried out in which 10 and 30% of the VFA COD was substituted with sucrose. The following distinctly different types of granules were observed in each testrun: in the reactor fed with solely VFA, black (B) and white (W) granules developed; in the reactor fed with a mixture of 90% VFA and 10% sucrose, three types of granules i.e., B, W, and grey (G) granules could be seen; in the reactor fed with 70% VFA and 30% sucrose, only W and G granules were found. The granular sludge yield increased proportional to the amount of sucrose COD. At steady-state performance of the reactors, specific acidogenic (SAA) and methanogenic (SMA) activity tests on these granules revealed that B granules had the highest SMA with low SAA. The W granules had very high SMA with low SAA. G granules gave the highest SAA with a considerable SMA. Measurement of coenzyme F420 revealed that B granules consist mainly of acetoclastic methanogens. The fore-mentioned tests were supplemented with analyses of the wash-out cells present in the reactor effluent and the results suggested that acidogens, if present, prevail at the granule surface. The B granules were particularly rich in Ca, Mn, and Zn minerals. The size distribution analysis showed that the granule diameter increased in the following order: B相似文献   

8.
The effect of nickel deprivation from the influent of a mesophilic (30 degrees C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5-15 g COD l(-1) day(-1) for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (+/-0.167) g CH(4)-COD g VSS(-1) day(-1) compared to 2.027 (+/-0.111) g CH(4)-COD g VSS(-1) day(-1) in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 muM Ni (dosed as NiCl(2)) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation.  相似文献   

9.
Anaerobic granules degrading pentachlorophenol (PCP) with specific PCP removal activity up to 14.6 mg/g of volatile suspended solids per day were developed in a laboratory-scale anaerobic upflow sludge blanket reactor at 28 degrees C, by using a mixture of acetate, propionate, butyrate, and methanol as the carbon source. The reactor was able to treat synthetic wastewater containing 40 to 60 mg of PCP per liter at a volumetric loading rate of up to 90 mg/liter of reactor volume per day, with a hydraulic retention time of 10.8 to 15 h. PCP removal of more than 99% was achieved. Results of adsorption of PCP by granular biomass indicated that the PCP removal by the granules was due to biodegradation rather than adsorption. A radiotracer assay demonstrated that the PCP-degrading granules mineralized [14C]PCP to 14CH4 and 14CO2. Toxicity test results indicated that syntrophic propionate degraders and acetate-utilizing methanogens were more sensitive to PCP than syntrophic butyrate degraders. The PCP-degrading granules also exhibited a higher tolerance to the inhibition caused by PCP for methane production and degradation of acetate, propionate, and butyrate, compared with anaerobic granules unadapted to PCP.  相似文献   

10.
Expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors were operated at 15 degrees C for the treatment of 2,4,6-trichlorophenol (TCP)-containing volatile fatty acid (VFA)-based wastewaters. The seed sludge used as inoculum for the control (no TCP) and test reactor was unexposed to chlorophenols (CPs) prior to the 425-day trial. TCP supplementation to the feed at 50 mg TCPl(-1) partially inhibited the anaerobic degradation of the VFA feed measured as COD removal efficiency. However, the withdrawal and subsequent application of stepwise increments to the TCP loading resulted in steady COD removal. Terminal restriction fragment length polymorphism analysis showed Methanosaeta-like Archaea in the control reactor over the experimental period. Different methanogenic populations were detected in the test reactor and responded to the changes in feed composition. Bacterial community analyses indicated changes in the community structure over time and suggested the presence of Campylobacter-like, Acidimicrobium-like and Heliophilum-like organisms in the samples. TCP mineralisation was by a reductive dechlorination pathway through 2,4-dichlorophenol (DCP) and 4-chlorophenol (4-CP) or 2-chlorophenol (2-CP). CP degradation rates in sludge granules from the lower chamber of the hybrid EGSB-AF reactor was in the order TCP > DCP > 4-CP > 2-CP. However, a biodegradability order of lower CPs > TCP was observed in fixed-film biomass taken from the upper reactor chamber, thus reflecting the role of this reactor section in the metabolism of residual lower CPs from the lower sludge-bed stage of operation.  相似文献   

11.
The reproducibility of low-temperature anaerobic biological wastewater treatment trials was evaluated. Two identical anaerobic expanded granular sludge bed bioreactors were used to treat synthetic volatile fatty acid-based industrial wastewater under ambient conditions (18-20 degrees C) and to investigate the effect of various environmental perturbations on reactor performance and microbial community dynamics, which were assessed by chemical oxygen demand removal or effluent volatile fatty acid determination and terminal restriction fragment length polymorphism analysis, respectively. Methanogenic activity was monitored using specific methanogenic activity assays. Reactor performance and microbial community dynamics were each well replicated between Reactor 1 and Reactor 2. Archaeal dynamics, in particular, were associated with reactor operating parameters. Terminal restriction fragment length polymorphism data suggested dynamic acetoclastic and hydrogenophilic methanogenic populations and were in agreement with temporal specific methanogenic activity data. Putative psychrophilic populations were observed in anaerobic bioreactor sludge for the first time.  相似文献   

12.
Continuous anaerobic digestion of waste activated sludge pretreated at low temperatures below 100°C increased methane generation by 30%. pH values of the digestion mixture increased, approximately from 0.3 to 0.55 by pretreatment, although its volatile fatty acids concentration was greater than the control. An abrupt increase in propionate : acetate ratio in digestion stage (e.g. from less than 1:1 to over 3.5 :1), provided a reliable indicator for impending failure.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Two upflow anaerobic hybrid reactors treated lactose and a mixture of ethanol, propionate and butyrate, respectively, at a volumetric loading rate of 3.7 kg chemical oxygen demand (COD) m−3day−1, a hydraulic retention time of 5 days and a liquid upflow velocity of 0.01 m/h. Under steady-state conditions, the lactose-fed sludge had much higher (20%–100%) specific methanogenic conversion rates than the volatile-fatty acid␣(VFA)/ethanol-fed sludge for all substrates tested, including VFA. In both reactors, a flocculant sludge developed, although a much higher content of extracellular polysaccharide was measured in the lactose-fed sludge [1900 μg compared to 305 μg uronic acid/g volatile suspended solids (VSS)]. When the liquid upflow velocity of a third, VFA/ethanol-fed reactor was increased to 0.5 m/h, granulation of the sludge occurred, accompanied by a large increase (200%–500%) in the specific methanogenic conversion rates for the syntrophic and methanogenic substrates studied. Granulation reduced the susceptibility of the sludge to flotation. Glucose was degraded at a high rate (100 mg glucose gVSS−1h−1) by the sludge from the third reactor, despite not having been exposed to a sugar-containing influent for 563␣days. Received: 7 June 1996 / Received revision: 23 September 1996 / Accepted: 29 September 1996  相似文献   

14.
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.  相似文献   

15.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55 degrees C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55 degrees C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

16.
Summary The influence of the volatile fatty acid composition of waste waters on biofilm development and on the time course of reactor start-up was investigated in laboratory scale fluidized bed reactors. It was found that biofilm development proceeded in a similar way with either acetate, butyrate, propionate or a mixture of these compounds as carbon source in the waste water. Startup was retarded, however, with propionate as sole carbon source. Scanning electron microscopic examination revealed that immobilization of bacteria on the sand used as adhesive support initially occurred in crevices and that thereupon the surface of the sand particles became colonized. The composition of the newly developed biomass was determined when reactors reached steady state. Significant differences in the relative substrate spectra and in the amounts of hydrogenotrophic and acetotrophic methanogenic bacteria were measured. The differences reflected the differences in the composition of the waste waters. The results obtained emphasize the role of the structure of the carrier surface in start-up of methanogenic fluidized bed reactors.Abbreviations used Aw ash weight - COD chemical oxygen demand - EB fluidized bed - hbi vitamin B12-HBI - spt sarcinapterin - UASB upflow anaerobic sludge blanket - VFA volatile fatty acid - VSS volatile suspended solids - Ww wet weight  相似文献   

17.
Korean food wastes were anaerobically digested to produce volatile fatty acids (VFA) that can be used as a carbon source in biological nutrient removal in a sequential batch reactor (SBR). Acetate, propionate and butyrate were produced at a yield of 379-400 g VFA/kg VS0 (initial volatile solids). The ratio of SCOD (Soluble Chemical Oxygen Demand) of VFA to ammonia nitrogen (N) was in the range of 36.2-36.5 and the ratio of SCOD to phosphorus was between 151 and 162. The removal rate of nitrogen and phosphorus improved from 44% and 37% to 92% and 73%, respectively when the VFA were added to the influent of the Taejon municipal wastewater plant. The concentration of nitrogen and phosphorus were maintained below 3 mg/l and 1 mg/l, respectively. The N- and P-content of the food waste was low enough not to influence the final N- and P-concentrations of the wastewater.  相似文献   

18.
The influence of environmental parameters on the diversity of methanogenic communities in 15 full-scale biogas plants operating under different conditions with either manure or sludge as feedstock was studied. Fluorescence in situ hybridization was used to identify dominant methanogenic members of the Archaea in the reactor samples; enriched and pure cultures were used to support the in situ identification. Dominance could be identified by a positive response by more than 90% of the total members of the Archaea to a specific group- or order-level probe. There was a clear dichotomy between the manure digesters and the sludge digesters. The manure digesters contained high levels of ammonia and of volatile fatty acids (VFA) and were dominated by members of the Methanosarcinaceae, while the sludge digesters contained low levels of ammonia and of VFA and were dominated by members of the Methanosaetaceae. The methanogenic diversity was greater in reactors operating under mesophilic temperatures. The impact of the original inoculum used for the reactor start-up was also investigated by assessment of the present population in the reactor. The inoculum population appeared to have no influence on the eventual population.  相似文献   

19.
Challenge of psychrophilic anaerobic wastewater treatment   总被引:45,自引:0,他引:45  
Psychrophilic anaerobic treatment is an attractive option for wastewaters that are discharged at moderate to low temperature. The expanded granular sludge bed (EGSB) reactor has been shown to be a feasible system for anaerobic treatment of mainly soluble and pre-acidified wastewater at temperatures of 5--10 degrees C. An organic loading rate (OLR) of 10--12 kg chemical oxygen demand (COD) per cubic meter reactor per day can be achieved at 10--12 degrees C with a removal efficiency of 90%. Further improvement might be obtained by a two-module system in series. Stabile methanogenesis was observed at temperatures as low as 4--5 degrees C. The specific activity of the mesophilic granular sludge was improved under psychrophilic conditions, which indicates that there was growth and enrichment of methanogens and acetogens in the anaerobic system. Anaerobic sewage treatment is a real challenge in moderate climates because sewage belongs to the 'complex' wastewater category and contains a high fraction of particulate COD. A two-step system consisting of either an anaerobic up-flow sludge bed (UASB) reactor combined with an EGSB reactor or an anaerobic filter (AF) combined with an anaerobic hybrid reactor (AH) is successful for anaerobic treatment of sewage at 13 degrees C with a total COD removal efficiency of 50% and 70%, respectively.  相似文献   

20.
Anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) was studied in upflow anaerobic sludge blanket (UASB) reactors operated under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. LAS C12 concentration in the influents was 10 mg.L(-1), and the hydraulic retention time in the reactors was 2 days. Adsorption of LAS C12 was assessed in an autoclaved control reactor and ceased after 115 days. The reactors were operated for a minimum of 267 days; 40-80% removal of LAS C12 was observed. A temperature reduction from 55 degrees C to 32 degrees C for 30 h resulted in process imbalance as indicated by increase of volatile fatty acids (VFA). The imbalance was much more intense in the LAS amended reactor compared with an unamended reactor. At the same time, the process imbalance resulted in discontinued LAS removal. This finding indicates that process stability is a key factor in anaerobic biological removal of LAS. After a recovery period, the removal of LAS resumed, providing evidence of biological anaerobic LAS degradation. The removal remained constant until termination of experiments in the reactor. Biodegradation of LAS in the mesophilic reactor was at the same level as in the thermophilic reactor under stable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号