共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The amounts of the β and β′ subunits of the DNA-dependent RNA polymerase relative to the amount of total protein synthesized have been determined under a number of growth conditions in two strains of Escherichia coli. The results of these measurements have been expressed as the relative rate of synthesis of core RNA polymerase, αp, assuming the four constituent subunits (2α, 1β and 1β′) to be synthesized in equivalent amounts.This quantity, αp, was found not to vary greatly with the growth rate μ. For glucose-grown cells of E. coli B/r (μ = 1.5 doublings/h) αp = 1.4%, corresponding to about 7000 molecules of core RNA polymerase per cell. For slowgrowing cells the value obtained for αp is lower and for fast-growing cells somewhat 3 higher. The comparison of these values with the number of RNA polymerase molecules estimated to be actively engaged in RNA synthesis indicates that both slow- and fast-growing cells contain a surplus of RNA polymerase, if the catalytic unit is assumed to be the monomer of core RNA polymerase.In addition to the measurements of cells during balanced growth at various rates, αp has been determined during the transition from one growth rate to another and during synchronous growth. During a shift-up the rate of synthesis of polymerase follows closely the rate of total protein synthesis, αp being nearly constant for a period of twenty minutes after the shift. In a synchronously dividing culture of E. coli B/r, αp was seen to be fairly constant during two cycles of synchronous division. It appears that αp is rather insensitive to the effect of gene doubling during the cell cycle. 相似文献
5.
Overproduction and purification of the omega subunit of Escherichia coli RNA polymerase 总被引:1,自引:0,他引:1
This paper reports the construction of plasmids which direct the overproduction of the omega subunit of Escherichia coli RNA polymerase and the subsequent purification of omega. Useful overproduction is achieved only if the natural ribosomal binding site region of rpoZ is replaced with the ribosomal binding site region of bacteriophage T7 gene 10. Overproduction is directed by T7 RNA polymerase which is provided on a separate plasmid. omega is purified by three column steps either from the insoluble inclusion body fraction or from the soluble fractions of lysates. The final yield is approximately 2 mg omega per 10 g cells wet wt. Additionally, we found that recombinant omega is readily cleaved by an endogenous protease. Sequence analysis of the most prevalent proteolytic fragment suggested that the protease responsible was the product of the ompT gene. Cleavage of omega is greatly reduced in ompT- strains. 相似文献
6.
Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase 总被引:9,自引:0,他引:9
The alpha subunit of Escherichia coli DNA-dependent RNA polymerase is encoded by the rpoA gene and plays a major role in enzyme assembly. A set of C-terminal deletion mutations of the rpoA gene was constructed. The results of mixed reconstitution experiments in vitro, using the truncated alpha polypeptides encoded by the rpoA deletion mutants, suggest that the amino-terminal two-thirds of alpha subunit is sufficient for the formation of pseudo-core complexes containing both beta and beta' subunits. 相似文献
7.
M Sugiura K Segawa K Yoshinaga Y Fujio N Ito 《Biochemical and biophysical research communications》1977,76(3):739-745
extracts contain UDP-galactose:NAD+ 2-hexosyl oxidoreductase (1). ADP-ribose also serves as a substrate resulting in formation of NADH and an oxidized ADP-ribose derivative. Treatment of the oxidized product with NaBH4 followed by hydrolysis at pH 2 and 100° releases xylose as well as ribose. We conclude that ADP-D--D--3-pentosulose (ADP-3-ketoribose) is the product derived from ADP-ribose. 相似文献
8.
The amino-terminal domain of the alpha subunit (alphaNTD) of Escherichia coli RNA polymerase consisting of 235 amino acid residues functions in the assembly of the alpha, beta, and beta' subunits into the core-enzyme. It has a tendency to form aggregates by itself at higher concentrations. For NMR structural analysis of alphaNTD, the solution conditions, including the use of non-denaturing detergents, were optimized by monitoring the translational diffusion coefficients using the field gradient NMR technique. Under the optimal conditions with taurodeoxycholate and with the aid of deuteration of the sample, alphaNTD gave triple-resonance spectra of good quality, which allowed the assignment of a large part of the backbone resonances. Analysis of the pattern of NOEs observed between the backbone amide and alpha-protons demonstrated that alphaNTD has three alpha-helices and two beta-sheets. Although the secondary structure elements essentially coincide with those in the crystal structure, the larger of the two beta-sheets has two additional beta-strands. The irregular NOE patterns observed for the three positions in the beta-sheets suggest the presence of beta-bulge structures. The positions of the three helices coincide with the conserved sequence regions that are responsible for the subunit assembly. 相似文献
9.
We describe a new method for quantitatively assaying the omega subunit of Escherichia coli RNA polymerase. The assay is based on the ability of RNA polymerase holoenzyme to catalyze the continuous synthesis of the dinucleotide pApU on a poly[d(A-T)] . poly[d(A-T)] template when supplied with AMP and UTP as substrates. Core enzyme, lacking omega subunit, catalyzed this reaction at a rate less than 1% that of holoenzyme. The omega subunit was not released from the enzyme/DNA complex during dinucleotide synthesis. Using this assay, a titration of a fixed concentration of core enzyme was observed with increasing concentrations of added omega subunit. Below a 1:1 omega:core ratio the measured activity increased linearly with omega concentration, whereas above a 1:1 ratio the activity remained constant. An immediate application of the assay is in determining the concentration of active omega, or equivalently of active holoenzyme, in any RNA polymerase preparation. 相似文献
10.
11.
Summary A collection of 95 independent, spontaneously-occurring mutants carrying amber lesions that affect expression of the gene, rpoB, has been isolated (see accompanying paper (Nene and Glass 1982)). Certain rpoB amber mutations act in trans, preventing a functional allele present on an F plasmid from acting at high temperature. Two such temperature-sensitive rpoB(Am) strains are shown to produce large, N-terminal amber fragments. The possibility that these truncated polypeptides are the cause of this trans-dominant conditional-lethal phenotype is supported by analysis of fragment levels in thermoresistant survivors: the nonsense fragments are degraded at a significantly faster rate (half-lives 1.4- to 2.6-fold reduced) in Ts+ derivatives likely to carry second-site mutations within rpoB. We suggest that the fragments interfere with RNA polymerase function by interacting with one or more of the polymerase subunits. 相似文献
12.
We studied the inhibition of tryptic digestion of the subassembly alpha 2 beta of Escherichia coli DNA-dependent RNA polymerase to investigate its interaction with RNA and rifampicin. Both agents decreased distinctly the cleavage of subunit beta in the subassembly as well as the degradation of the transiently formed polypeptides (Mr greater than 80000). Short RNAs with a chain length of approximately 35 nucleotides were most protective at a concentration of 1 mg/ml while long RNAs were less effective at the same concentration. DNA did not exert any observable protective effects. The association of RNA with alpha 2 beta was shown by chromatography on phosphocellulose, which separates alpha 2 beta bound to RNA from free alpha 2 beta. The association of alpha 2 beta with RNA was inhibited by rifampicin. 相似文献
13.
K Severinov A Mustaev M Kashlev S Borukhov V Nikiforov A Goldfarb 《The Journal of biological chemistry》1992,267(18):12813-12819
The 1342 amino acid long beta subunit of Escherichia coli RNA polymerase includes a dispensable region (residues 940-1040) that is absent in homologous RNA polymerase subunits from chloroplasts, eukaryotes, and archaebacteria (Borukhov, S., Severinov, K., Kashlev, M., Lebedev, A., Bass, I., Rowland, G. C., Lim, P.-P., Glass, R. E., Nikiforov, V., and Goldfarb, A. (1991) J. Biol. Chem. 266, 23921-23926). Genetic disruption of this region by in-frame deletion or insertion sensitizes the beta subunit in assembled RNA polymerase molecules to attack by trypsin. We demonstrate that RNA polymerase with the beta polypeptide cleaved in the dispensable region retains normal in vitro activity. Moreover, the RNA polymerase activity is completely restored after denaturation and reconstitution of the enzyme carrying cleaved beta subunit indicating that its carboxyl- and amino-terminal parts fold and assemble into RNA polymerase as separate entities. 相似文献
14.
15.
Monoclonal antibodies (mAbs) raised against the beta' subunit of the Escherichia coli RNA polymerase were used to probe the structure and function of this subunit. Of the five anti-beta' monoclonal antibodies studied, only mAb 311G2 is a strong inhibitor of RNA polymerase activity. This antibody binds to an epitope which is exposed in both the assembled holoenzyme and isolated beta' subunit. In contrast, the null antibodies bind to the free beta' subunit but very weakly to native RNA polymerase. It would appear that the beta' domain in which their epitopes reside is either conformationally altered or blocked due to interaction with other subunits in native RNA polymerase. In order to locate the positions of the epitopes for these five monoclonal antibodies, a series of overlapping deletion mutants have been constructed by partial restriction and religation of the beta' gene present in pT7 beta' (Zalenskaya, K., Lee, J., Gujuluva, C. N., Shin, Y. K., Slutsky, M., nd Goldfarb, A. (1990) Gene 89, 7-12). The presence of the epitopes for each of the anti-beta' monoclonal antibodies was assessed by Western blotting. The results indicate that the epitopes for mAb 340F11, mAb 370F3, mAb 371D6, and mAb 372B2 are located between amino acids 817-876. This region may be important in enzyme assembly or subunit-subunit interaction. The epitope for the inhibitory antibody, mAb 311G2, is located between amino acids 1047-1093. This region may be involved in the catalytic function of RNA polymerase. 相似文献
16.
Functionally equivalent subunits of RNA polymerase from Micrococcus luteus and Escherichia coli differ from each other in many molecular and antigenic properties. In spite of these differences, subunit alpha from E. coli and subunit beta from M. luteus form a complex alpha2beta, when incubated together. This complex binds rifampicin tightly, which the isolated subunits do not. The hybrid complex is very similar in its properties to the complex alpha2beta formed only from E. coli or M. luteus subunits. Since the sub-assembly alpha2beta from E. coli is reported to be an obligatory intermediate in the assembly process of complete RNA polymerase, the newly described hybrid sub-assembly may function similarly as an intermediate in the formation of the hybrid form of RNA polymerase described earlier. 相似文献
17.
18.
19.
Highly purified Escherichia coli RNA polymerase contains a small subunit termed omega that has a molecular mass of 10 105 Da and is comprised of 91 amino acids. E. coli strains lacking omega (omega-less) are viable, but exhibit a slow-growth phenotype. Renaturation of RNA polymerase isolated from an omega-less mutant, in the presence of omega, resulted in maximum recovery of activity. The omega-less RNA polymerase from omega-less strains recruits the chaperonin, GroEL (unlike the wild-type enzyme), suggesting a structural deformity of the mutant enzyme. The GroEL-containing core RNA polymerase interacts efficiently with sigma70 to generate the fully functional holoenzyme. However, when GroEL was removed, the enzyme was irreversibly nonfunctional and was unable to bind to sigma70. The damaged enzyme regained activity after going through a cycle of denaturation and reconstitution in the presence of omega or GroEL. GroES was found to have an inhibitory effect on the core-sigma70 association unlike the omega subunit. The omega subunit may therefore be needed for stabilization of the structure of RNA polymerase. 相似文献