首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both source-sink theory and extensions of optimal foraging theory ("balanced dispersal" theory) address dispersal and population dynamics in landscapes where habitat patches vary in quality. However, studying dispersal mechanisms empirically has proven difficult, and dispersal is rarely tied back to long-term spatial dynamics. We used a manipulable laboratory system consisting of bacteria and protozoa to investigate the ability of source-sink and optimal foraging theories to explain both dispersal and emergent spatial dynamics. Consistent with source-sink models and contrary to balanced dispersal models, there was a consistent net flux of protist individuals from high to low resource patches. However, unlike the simplest source-sink models, intermediate rates of dispersal led to highest abundances in low resource patches. Side experiments found strong density dependence in local population dynamics and differences in average protist body size in high and low resource patches. Parameterization and analysis of a two-patch model showed that high migration from high to low resource patches could have depressed population density in low resource patches, creating pseudosinks. The movement of individuals and biomass from sources to sinks (a form of ecosystem subsidy) resulted in the convergence of body size and population densities in sources and sinks. Our results indicate a need to carefully consider movement patterns and interaction with local dynamics in potential source-sink systems.  相似文献   

2.
I investigate two aspects of source-sink theory that have hitherto received little attention: density-dependent dispersal and the cost of dispersal to sources. The cost arises because emigration reduces the per capita growth rate of sources, thus predisposing them to extinction. I show that source-sink persistence depends critically on the interplay between these two factors. When the emigration rate increases with abundance at an accelerating rate, dispersal costs to sources is the lowest and risk of source-sink extinction the least. When the emigration rate increases with abundance at a decelerating rate, dispersal costs to sources is the highest and the risk of source-sink extinction the greatest. Density-independent emigration has an intermediate effect. Thus, density-dependent dispersal per se does not increase or decrease source-sink persistence relative to density-independent dispersal. The exact mode of dispersal is crucial. A key point to appreciate is that these effects of dispersal on source-sink extinction arise from the temporal density-dependence that dispersal induces in the per capita growth rates of source and sink populations. Temporal density-dependence due to dispersal is beneficial at low abundances because it rescues sinks from extinction, and detrimental at high abundances because it drives otherwise viable sources to extinction. These results are robust to the nature of population dynamics in the sink, whether exponential or logistic. They provide a means of assessing the relative costs and benefits of preserving sink habitats given three biological parameters.  相似文献   

3.
Habitat quality and habitat geometry are two crucial factors driving metapopulation dynamics. However, their intricacy has prevented so far a reliable test of their relative impact on local population dynamics and persistence. Here we report on a long‐term study in which we manipulated habitat quality within a butterfly metapopulation, whereas habitat geometry was kept constant. The treatment consisted in lowering the quality of certain habitat patches while others were kept untreated, using the same spatial design over years. The effect of the treatment on metapopulation dynamics was assessed by comparing residence probability and dispersal rates within the same habitat network on 11 and 6 independent butterfly generations before and after treatment, respectively. Results showed that the experimental decrease in habitat quality generated significantly higher emigration rates from treated patches. This increase was associated with a significant decrease in dispersal rates out of untreated patches, and a significant higher residence probability in these patches. The direct relation between lower habitat quality and higher dispersal propensity in treated patches was expected. However, the lower dispersal from untreated patches after treatment was opposite to the expectation of positive density dependent dispersal generally observed in butterflies. Such negative density‐dependent dispersal would allow a rapid fine‐tuning of dispersal rates to changes in habitat quality, particularly when the spatial autocorrelation of the environmental is low. Accordingly, dispersal would promote an ideal free distribution of individuals in the landscape according to their fitness expectation.  相似文献   

4.
Gilles Houle 《Oikos》2005,111(3):465-472
Several factors might influence an organism's tendency or willingness to leave a given patch. One such factor is conspecific density, which may affect the per capita emigration rate. Some previous field studies on butterflies have reported positively density-dependent dispersal (emigration increases with population density) whereas the opposite, negatively density-dependent dispersal, has been found in other species. We investigated the effect of conspecific density on both the tendency to cross a patch boundary and within-patch mobility in Melitaea cinxia , by experimentally manipulating density in large outdoor cages divided into two habitat patches, separated by a barrier of unsuitable habitat. In contrast to previous results for M. cinxia , we found that the butterflies moved away from a patch at higher rates in high conspecific density (positively density-dependent emigration). The within-patch mobility, measured as the distance travelled per time unit, was however unaffected by butterfly density. A possible explanation for the seeming discrepancy with previous results could be that we used higher butterfly densities. For species with fluctuating population dynamics, such as M. cinxia , dispersal activity both at low and at high local density will be important for population phenomena such as fluctuations in distributional range over good and bad years.  相似文献   

5.
We conducted a field experiment that manipulated landscapes by mowing so that the amount of unfavorable habitat (low cover) for prairie voles ( Microtus ochrogaster ) increased while the number and size of favorable patches (high cover) remained constant. Distance between favorable patches increased as the amount of unfavorable habitat increased, so we could test two current hypotheses concerning the effect of habitat fragmentation on local populations: 1) increased distance between favorable habitat patches reduces successful per capita dispersal (emigration and immigration) because dispersers suffer greater exposure to predators (the predation hypothesis); and 2) per capita dispersal is inversely density dependent in voles because increased aggression at higher density inhibits movements (the social fence hypothesis). As predicted by the predation hypothesis, increased distance between favorable habitat patches led to decreased successful dispersal among patches and increased per capita mortality, particularly among subadult and adult males (the categories of voles most likely to emigrate). As predicted by the social fence hypothesis, dispersal was inversely density dependent, and dispersing voles displayed a greater frequency of wounding (an indication of increased aggressive interactions) than did residents. The amount of wounding in general did not increase with density, however, and, as distance between patches increased to 60 m, successful dispersal became rare and erratic. Nevertheless, our overall results supported current hypotheses regarding the effects of increased habitat fragmentation on patterns of dispersal and mortality. Examining the impact of these effects on local population dynamics within different landscapes will require longer periods of observation.  相似文献   

6.
Vladim&#;´r Reme&#; 《Oikos》2000,91(3):579-582
Several theoretical models have been proposed to describe population dynamics in a spatially heterogeneous environment. The source-sink model is among the most popular. Diffendorfer recently summarized its assumptions and predictions. Given the model reviewed, he argued that source-sink population dynamics arises if dispersal is somehow constrained. I offer an additional mechanism by suggesting that source-sink population dynamics can be generated by anthropogenic changes in landscapes that occur so quickly that organisms no longer make optimal habitat selection decisions. Individuals select the same habitats as their ancestors but these decisions no longer provide high fitness because of human-induced changes in habitat quality, such as increased rates of predation and/or parasitism. Provided that some of the habitats selected are turned by human-induced changes into sink habitats, source-sink population dynamics can emerge.  相似文献   

7.
Summary I evaluate habitat matching rules based on ideal distribution models of density-dependent habitat use. Recent approaches and the ideal free continuous input matching rule on which they depend, are restricted to only those habitats that are jointly occupied across the full range of population sizes. These assumptions may often be inappropriate to field applications of habitat matching. I develop alternatives that can be applied to a wide array of ideal forms of habitat selection, including the ideal free, continuous input example. Input matching can be distinguished from assumptions of consumer-resource models and preemptive habitat use by regressions of density between paired habitats (isodars). Isodars for continuous input models should be linear on a logarithmic scale, while those for consumer-resource models should be linear on an arithmetic scale. Pre-emptive isodars can be distinguished from the others by dramatic non-linearities at both low and high densities. Field data on white-footed mice support the consumer-resource theory. Implications of the rules for population regulation and community organization are highlighted by new models that specify how the fitness of pre-emptive habitat selectors should decline with increasing density. Strong non-linearities produced by comparisons between variable and homogeneous habitats produce reversing source-sink population regulation and a new form of cyclical community dynamics. Variable habitats act as a source of emigrants at low density and a sink for immigrants at high density. Subordinate species may occupy only the variable habitat at both low and high density.  相似文献   

8.
Dispersal among sites can affect within-site competitive outcomes via source-sink dynamics. Source-sink dynamics are thought to affect competitive outcomes primarily via spatial subsidies: by redistributing individuals from sources to sinks, source-sink dynamics can alter competitive outcomes in both sources and sinks. However, dispersal also can affect competitive outcomes via demography modification, which occurs when dispersal alters the parameters governing species' per capita demographic rates. For instance, dispersal of exploitative competitors might cause extinction of some of the resources for which competition occurs, thereby altering the competition coefficients. I used protist microcosms as a model system to test whether spatial subsidies alone could explain the effects of source-sink dynamics on competitive outcomes. I examined the long-term outcome of exploitative competition among three bacterivorous ciliate protists in microcosms of high enrichment (sources) and low enrichment (sinks) in both the presence and the absence of dispersal. Dispersal altered competitive outcomes. Fitting mathematical models to the population dynamics revealed that spatial subsidies were insufficient to account for the effects of dispersal. Fitting alternative models strongly suggested that demography modification was an important determinant of competitive outcomes. These results provide the first evidence that dispersal does not simply redistribute competitors but can alter their per capita demographic rates.  相似文献   

9.
A key assumption of the ideal free distribution (IFD) is that there are no costs in moving between habitat patches. However, because many populations exhibit more or less continuous population movement between patches and traveling cost is a frequent factor, it is important to determine the effects of costs on expected population movement patterns and spatial distributions. We consider a food chain (tritrophic or bitrophic) in which one species moves between patches, with energy cost or mortality risk in movement. In the two-patch case, assuming forced movement in one direction, an evolutionarily stable strategy requires bidirectional movement, even if costs during movement are high. In the N-patch case, assuming that at least one patch is linked bidirectionally to all other patches, optimal movement rates can lead to source-sink dynamics where patches with negative growth rates are maintained by other patches with positive growth rates. As well, dispersal between patches is not balanced (even in the two-patch case), leading to a deviation from the IFD. Our results indicate that cost-associated forced movement can have important consequences for spatial metapopulation dynamics. Relevance to marine reserve design and the study of stream communities subject to drift is discussed.  相似文献   

10.
Dispersal patterns are important in metapopulation ecology because they affect the dynamics and survival of populations. However, because little empirical information exists on dispersal behaviour of individuals, theoretical models usually assume random dispersal. Recent empirical evidence, by contrast, suggests that the butterfly Maniola jurtina uses a non‐random, systematic dispersal strategy, can detect and orient towards habitat from distances of 100–150 m, and prefers a familiar habitat patch over a non‐familiar one (‘homing behaviour’). The present study (1) investigated whether these results generalise to another butterfly species, Pyronia tithonus; and (2) examined the cause of the observed ‘homing behaviour’ in M. jurtina. P. tithonus used a similar non‐random, systematic dispersal strategy to M. jurtina, had a similar perceptual range for habitat detection and preferred a familiar habitat patch over a non‐familiar one. The ‘homing behaviour’ of M. jurtina was found to be context‐dependent: individual M. jurtina translocated within habitat did not return towards their capture point, whereas individuals translocated similar distances out of habitat did return to their ‘home’ patch. We conclude that butterfly ‘homing behaviour’ is not based on an inherent preference for a familiar location, but that familiarity with an area facilitates the recognition of suitable habitat, towards which individuals orient if they find themselves in unsuitable habitat. Contrary to conventional wisdom, we suggest that frequent, short ‘excursions’ over habitat patch boundaries are evolutionarily advantageous to individuals, because increased familiarity with the surrounding environment is likely to increase the ability of a straying animal to return to its natural habitat, and to reduce the rate of mortality experienced by individuals attempting to disperse between habitat patches. We discuss the implications of the non‐random dispersal for existing metapopulation models, including models of the evolution of dispersal rates.  相似文献   

11.
The role of habitat choice behavior in the dynamics of predator-prey systems is explored using simple mathematical models. The models assume a three-species food chain in which each population is distributed across two or more habitats. The predator and prey adjust their locations dynamically to maximize individual per capita growth, while the prey's resource has a low rate of random movement. The two consumer species have Type II functional responses. For many parameter sets, the populations cycle, with predator and prey "chasing" each other back and forth between habitats. The cycles are driven by the aggregation of prey, which is advantageous because the predator's saturating functional response induces a short-term positive density dependence in prey fitness. The advantage of aggregation in a patch is only temporary because resources are depleted and predators move to or reproduce faster in the habitat with the largest number of prey, perpetuating the cycle. Such spatial cycling can stabilize population densities and qualitatively change the responses of population densities to environmental perturbations. These models show that the coupled processes of moving to habitats with higher fitness in predator and prey may often fail to produce ideal free distributions across habitats.  相似文献   

12.
Hannu Pys 《Oikos》2001,94(2):365-373
The applicability of ideal free, ideal despotic and ideal preemptive habitat selection models to explain dynamics of habitat distribution of breeding mallards ( Anas platyrhynchos ) was explored. Data from 35 lakes studied between 1985 and 2000 were used to examine overall habitat distribution of breeding pairs, breeding success in different habitats, within-year order of habitat occupation, and density dependence of habitat distribution and breeding success. Two habitat types, rich and poor, were defined based on the structure and luxuriance of shore vegetation; each lake belonged to one or the other of the habitat types. Breeding pairs used the rich habitat more than expected, breeding density also being higher there than in the poor habitat. Both average brood density and breeding success were higher in the rich habitat than in the poor. Breeding success was not density dependent, neither when analysed separately for the habitat types, nor in the study area in general. Within season, arriving mallard pairs did not occupy rich lakes earlier than poor lakes. An isodar analysis based on between-year variation of the breeding density in rich and poor habitats revealed that habitat distribution of breeding pairs was not density dependent. By contrast, density in the rich habitat increased and proportional use of the poor habitat decreased with increasing overall population density, i.e. the rich habitat got increasingly crowded. None of the habitat selection models considered was applicable to explain the dynamics of habitat distribution of breeding mallards.  相似文献   

13.
Variation in food resource availability can have profound effects on habitat selection and dynamics of populations. Previous studies reported higher food resource availability and fruit removal in treefall gaps than in the understorey. Therefore, gaps have been considered "keystone habitat" for Neotropical frugivore birds. Here we test if this prediction would also hold for terrestrial small mammals. In the Amazon, we quantified food resource availability in eleven treefall gaps and paired understorey habitats and used feeding experiments to test if two common terrestrial rodents ( Oryzomys megacephalus and Proechimys spp.) would perceive differences between habitats. We live-trapped small mammals in eleven gaps and understorey sites for two years, and compared abundance, fitness components (survival and per capita recruitment) and dispersal of these two rodent species across gaps and understorey and seasons (rainy and dry). Our data indicated no differences in resource availability and consumption rate between habitats. Treefall gaps may represent a sink habitat for Oryzomys where individuals had lower fitness, apparently because of habitat-specific ant predation on early life stages, than in the understorey, the source habitat. Conversely, gaps may be source habitat for Proechimys where individuals had higher fitness, than in the understorey, the sink habitat. Our results suggest the presence of source-sink dynamics in a tropical gap-understorey landscape, where two rodent species perceive habitats differently. This may be a mechanism for their coexistence in a heterogeneous and species-diverse system.  相似文献   

14.
The False Ringlet (Coenonympha oedippus) is a European butterfly species, endangered due to the severe loss and fragmentation of its habitat. In Hungary, two remaining populations of the butterfly occur in lowland Purple Moorgrass meadows. We studied a metapopulation occupying twelve habitat patches in Central Hungary. Our aim was to reveal what measures of habitat quality affect population size and density of this metapopulation, estimate dispersal parameters and describe phenology of subpopulations. Local population sizes and dispersal parameters were estimated from an extensive mark–release–recapture dataset, while habitat quality was characterized by groundwater level, cover of grass tussocks, bush cover, height of vegetation and grass litter at each habitat patch. The estimated size of the metapopulation was more than 3,000 individuals. We estimated a low dispersal capacity, especially for females, indicating a very low probability of (re)colonization. Butterfly abundance and density in local populations increased with higher grass litter, lower groundwater level and larger area covered by tussocks. We suppose that these environmental factors affect butterfly abundance by determining the microclimatic conditions for both larvae and adult butterflies. Our results suggest that the long-term preservation of the studied metapopulation needs the maintenance of high quality habitat patches by appropriate mowing regime and water regulation. Management also should facilitate dispersal to strengthen metapopulation structure with creating stepping-stones or gradually increase habitat quality in present matrix.  相似文献   

15.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full‐siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co‐evolution of host resistance and parasite virulence.  相似文献   

16.
Habitat fragmentation, the conversion of landscapes into patchy habitats separated by unsuitable environments, is expected to reduce dispersal among patches. However, its effects on dispersal should depend on dispersal syndromes, i.e. how dispersal covaries with phenotypic traits, because these syndromes can drastically alter dispersal and subsequent ecological and evolutionary dynamics. Our comprehension of whether environmental factors such as habitat fragmentation generate and/or modify dispersal syndromes (i.e. conditional dispersal syndromes) is therefore key for biodiversity forecasting. Here we tested whether habitat fragmentation modulates dispersal syndromes by experimentally manipulating matrix harshness, a critical feature of habitat fragmentation, in ciliate microcosms. We found evidence for dispersal syndromes involving multiple traits linked to morphology (elongation and size), movement (velocity and linearity) and demography (growth rate and maximal population density). More importantly, these syndromes were modified by matrix harshness, with increased differences between residents and dispersers in morphology and movement traits, and decreased differences in growth rate as the matrix became increasingly harsh. Our findings thus reveal that habitat fragmentation can mediate the intensity and form of dispersal syndromes, a context-dependence that could have important consequences for ecological and evolutionary dynamics under environmental changes.  相似文献   

17.
We construct and explore a general modeling framework that allows for a systematic investigation of the impact of changes in landscape structure on population dynamics. The essential parts of the framework are a landscape generator with independent control over landscape composition and physiognomy, an individual-based spatially explicit population model that simulates population dynamics within heterogeneous landscapes, and scale-dependent landscape indices that depict the essential aspects of landscape that interact with dispersal and demographic processes. Landscape maps are represented by a grid of 50x50 cells and consist of good-quality, poor-quality, or uninhabitable matrix habitat cells. The population model was shaped in accordance to the biology of European brown bears (Ursus arctos), and demographic parameters were adjusted to yield a source-sink configuration. Results obtained with the spatially explicit model do not confirm results of earlier nonspatial source-sink models where addition of sink habitat resulted in a decrease of total population size because of dilution of high-quality habitat. Our landscape indices, which describe scale-dependent correlation between and within habitat types, were able to explain variations in variables of population dynamics (mean number of females with sink home ranges, mean number of females with source home ranges, and mean dispersal distance) caused by different landscape structure. When landscape structure changed, changes in these variables generally followed the corresponding change of an appropriate landscape index in a linear way. Our general approach incorporates source-sink dynamics as well as metapopulation dynamics, and the population model can easily be modified for other species groups.  相似文献   

18.
Sib–sib or, more generally, family resemblance for dispersal seems a widespread characteristic of vertebrates, and the birthplace has the potential to shape the dynamics and features of animal populations. Dispersal studies have often stressed the fundamental link between the fate of dispersers and population dynamics, but few have focused on the dispersal directions of individuals, despite the profound implications that this may have on population distribution, structure, dynamics and viability. We investigated the directions followed by 72 radio‐tagged dispersers (43 males and 29 females from 14 nest sites) in an eagle owl Bubo bubo population, and assessed their a) inter‐individual distances during dispersal and b) age at dispersal departure. For siblings, as well as potential‐siblings (i.e. individuals born in the same nest in different years), the birthplace influenced inter‐individual distances and dispersal directions, i.e. dispersers from the same nest moved to similar locations during the study; moreover, in each year, individuals from the same birthplace moved across the same areas in a short time period. Finally, siblings and potential‐siblings born in the same nest in different years started dispersal at similar ages. Based on the movement patterns of dispersers we discuss: a) the potential implications of the birthplace‐dependent dispersal on the ideal free distribution theory, as well as in terms of kin competition, inbreeding avoidance and population dynamics; and, more generally, b) the effect of the temporal features of the natal dispersal on the concept of habitat suitability vs density of individuals developed by the ideal free distribution theory.  相似文献   

19.
Comparison of dispersal rates of the bog fritillary butterfly between continuous and fragmented landscapes indicates that between patch dispersal is significantly lower in the fragmented landscape, while population densities are of the same order of magnitude. Analyses of the dynamics of the suitable habitat for the butterfly in the fragmented landscape reveal a severe, non linear increase in spatial isolation of patches over a time period of 30 years (i.e. 30 butterfly generations), but simulations of the butterfly metapopulation dynamics using a structured population model show that the lower dispersal rates in the fragmented landscape are far above the critical threshold leading to metapopulation extinction. These results indicate that changes in individual behaviour leading to the decrease of dispersal rates in the fragmented landscape were rapidly selected for when patch spatial isolation increased. The evidence of such an adaptive answer to habitat fragmentation suggests that dispersal mortality is a key factor for metapopulation persistence in fragmented landscapes. We emphasise that landscape spatial configuration and patch isolation have to be taken into account in the debate about large-scale conservation strategies.  相似文献   

20.
Most classical models for the movement of organisms assume that all individuals have the same patterns and rates of movement (for example, diffusion with a fixed diffusion coefficient) but there is empirical evidence that movement rates and patterns may vary among different individuals. A simple way to capture variation in dispersal that has been suggested in the ecological literature is to allow individuals to switch between two distinct dispersal modes. We study models for populations whose members can switch between two different nonzero rates of diffusion and whose local population dynamics are subject to density dependence of logistic type. The resulting models are reaction–diffusion systems that can be cooperative at some population densities and competitive at others. We assume that the focal population inhabits a bounded region and study how its overall dynamics depend on the parameters describing switching rates and local population dynamics. (Traveling waves and spread rates have been studied for similar models in the context of biological invasions.) The analytic methods include ideas and results from reaction–diffusion theory, semi-dynamical systems, and bifurcation/continuation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号