首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
We recently reported a critical role of NFκB in mediating hyperproliferative and anti-apoptotic effects of progastrin on proximal colonic crypts of transgenic mice overexpressing progastrin (Fabp-PG mice). We now report activation of β-catenin in colonic crypts of mice in response to chronic (Fabp-PG mice) and acute (wild type FVB/N mice) progastrin stimulation. Significant increases were measured in relative levels of cellular and nuclear β-catenin and pβ-cat45 in proximal colonic crypts of Fabp-PG mice compared with that in wild type littermates. Distal colonic crypts were less responsive. Interestingly, β-catenin activation was downstream of IKKα,β/NFκB, because treatment of Fabp-PG mice with the NFκB essential modulator (NEMO) peptide (inhibitor of IKKα,β/NFκB activation) significantly blocked increases in cellular/nuclear levels of total β-catenin/pβ-cat45/and pβ-cat552 in proximal colons. Cellular levels of pβ-cat33,37,41, however, increased in proximal colons in response to NEMO, probably because of a significant increase in pGSK-3βTyr216, facilitating degradation of β-catenin. NEMO peptide significantly blocked increases in cyclin D1 expression, thereby, abrogating hyperplasia of proximal crypts. Goblet cell hyperplasia in colonic crypts of Fabp-PG mice was abrogated by NEMO treatment, suggesting a cross-talk between the NFκB/β-catenin and Notch pathways. Cellular proliferation and crypt lengths increased significantly in proximal but not distal crypts of FVB/N mice injected with 1 nm progastrin associated with a significant increase in cellular/nuclear levels of total β-catenin and cyclin D1. Thus, intracellular signals, activated in response to acute and chronic stimulation with progastrin, were similar and specific to proximal colons. Our studies suggest a novel possibility that activation of β-catenin, downstream to the IKKα,β/NFκB pathway, may be integral to the hyperproliferative effects of progastrin on proximal colonic crypts.Accumulating evidence suggests that gastrins play an important role in proliferation and carcinogenesis of gastrointestinal and pancreatic cancers (1, 2). Progastrin and glycine-extended gastrin (G-Gly)3 are predominant forms of gastrins found in many tumors, including colon (35). Progastrin exerts potent proliferative and anti-apoptotic effects in vitro and in vivo on intestinal mucosal cells (610) and on pancreatic cancer cells (11). Transgenic mice overexpressing progastrin from either the liver (hGAS) or intestinal epithelial cells (Fabp-PG) are at a higher risk for developing pre-neoplastic and neoplastic lesions in colons in response to azoxymethane (1215). Treatment with G-Gly similarly increased the risk for developing pre-neoplastic lesions in rats (16). Thus progastrin and G-Gly exert co-carcinogenic effects in vivo (1216).Under physiological conditions, only processed forms of gastrins (G17, G34) are present in the circulation (17). In certain disease states, elevated levels of circulating progastrin (0.1 to >1.0 nm) are measured (1). Because co-carcinogenic effects of progastrin are measured in Fabp-PG mice, which express pathophysiological concentrations of hProgastrin (<1–5 nm) (12), elevated levels of circulating progastrin measured in certain disease states in humans may play a role in colon carcinogenesis. A curious finding was that pre-neoplastic and neoplastic lesions were significantly increased in proximal, but not distal, colons of Fabp-PG mice, in response to azoxymethane (12, 14), which may reflect an increase in proliferation and a decrease in azoxymethane-induced apoptosis in proximal colons of Fabp-PG mice (18). We reported a critical role of NFκB activation in mediating proliferation and the anti-apoptotic effect of progastrin on pancreatic cancer cells (in vitro) and on proximal colonic crypts of Fabp-PG mice (in vivo) (11, 18). Whereas the Wnt/β-catenin pathway is known to play a role in the proliferation of colonic crypts (19), its role in mediating biological effects of progastrin remains unknown.β-Catenin is regulated by canonical (GSK-3β phosphorylation-dependent) and non-canonical (GSK-3β phosphorylation-independent) pathways. In the canonical pathway, inhibition of GSK-3β protects β-catenin against degradation by protein complexes, consisting of GSK-3β, axin, and adenomatous polyposis coli (20). In a resting cell, β-catenin is not present in the cytoplasm or nucleus because of proteasomal degradation of β-catenin that is not bound to E-cadherin (20). Following inactivation of GSK-3β, β-catenin stabilizes in the cytoplasm and translocates to the nucleus where it cooperates with Tcf/Lef for activation of target genes (20). In the current studies, we examined whether β-catenin is activated in proximal versus distal colonic crypts of Fabp-PG mice. Relative levels of β-catenin and its target gene product, cyclin D1, were significantly increased in proximal versus distal colonic crypts of Fabp-PG mice. We next examined a possible cross-talk between NFκB and β-catenin activation and the role of GSK-3β. Our results suggest the novel possibility that β-catenin activation in response to progastrin is downstream to IKKα,β/NFκB p65 activation, and that phosphorylation of GSK-3β at Tyr216 may be critically involved.To examine whether differences measured in the response of proximal versus distal colons in Fabp-PG mice were not an artifact of chronic stimulation, we additionally injected WT FVB/N mice with progastrin, as an acute model of stimulation. Our results confirmed that differences we had measured in Fabp-PG mice are not an artifact of chronic stimulation but represent inherent differences in the response of proximal versus distal colonic crypts to circulating progastrins.We and others (18, 21) have previously demonstrated goblet cell hyperplasia in colonic crypts of transgenic mice overexpressing progastrin. In the current studies, we confirmed a significant increase in goblet cell hyperplasia/metaplasia (?) in proximal colonic crypts of Fabp-PG mice. Importantly, goblet cell hyperplasia was reversed to wild type levels by attenuating NFκB activation (and hence β-catenin activation) in NEMO-treated mice. The results of the current studies thus further suggest that pathways which dictate goblet cell lineage may be modulated by progastrin and may be downstream of NFκB/β-catenin activation. This represents a novel paradigm, which needs to be further examined.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Endothelin-1 (ET-1) is a potent vasoconstrictor and co-mitogen for vascular smooth muscle and is implicated in pulmonary vascular remodeling and the development of pulmonary arterial hypertension. Vascular smooth muscle is an important source of ET-1. Here we demonstrate synergistic induction of preproET-1 message RNA and release of mature peptide by a combination of tumor necrosis factor α (TNFα) and interferon γ (IFNγ) in primary human pulmonary artery smooth muscle cells. This induction was prevented by pretreatment with the histone acetyltransferase inhibitor anacardic acid. TNFα induced a rapid and prolonged pattern of nuclear factor (NF)-κB p65 subunit activation and binding to the native preproET-1 promoter. In contrast, IFNγ induced a delayed activation of interferon regulatory factor-1 without any effect on NF-κB p65 nuclear localization or consensus DNA binding. However, we found cooperative p65 binding and histone H4 acetylation at distinct κB sites in the preproET-1 promoter after stimulation with both TNFα and IFNγ. This was associated with enhanced recruitment of RNA polymerase II to the ATG start site and read-through of the ET-1 coding region. Understanding such mechanisms is crucial in determining the key control points in ET-1 release. This has particular relevance to developing novel treatments targeted at the inflammatory component of pulmonary vascular remodeling.Endothelin-1 is a 21-amino acid peptide which is known to be both a potent vasoconstrictor and mitogen for vascular smooth muscle (1, 2). It is released as a 38-amino acid precursor (Big ET-12) before cleavage to the mature ET-1 form. As such it has been implicated in the pathogenesis of vascular disease and is particularly associated with pulmonary arterial hypertension (3). Indeed, several endothelin receptor antagonists are now approved for the treatment of pulmonary arterial hypertension (4). However, endothelin receptor antagonists as a class are associated with potentially serious side effects (4), making new treatments aimed at blocking ET-1 synthesis an attractive alternative.Although endothelial cells are thought to be the main source of ET-1 release, several groups including our own have shown that ET-1 can be released from the more numerous vascular smooth muscle cells (510). The vascular pathology observed in pulmonary arterial hypertension is propagated by inflammation, and circulating levels of cytokines including tumor necrosis factor α (TNFα) are elevated in patients with pulmonary arterial hypertension (1115). In many cell types cytokines mediate their biological effects at least in part by the activation of the nuclear factor κB (NF-κB) pathway (16), and a role for NF-κB in pulmonary arterial hypertension has been proposed (17). In addition, we have shown previously that a combination of TNFα and interferon γ (IFNγ) stimulates human pulmonary artery smooth muscle (HPASM) cells to release ET-1 (18). However, the mechanisms underlying this effect are unknown.The preproET-1 promoter region has been shown experimentally to possess binding sites for nuclear factor (NF)-1 and phorbol ester-sensitive c-Fos and c-Jun complexes (19), acute phase reactant regulatory proteins, and binding sites for AP-1 and GATA-2 (2022). In addition, binding sites for interferon regulatory factor-1 (IRF-1) and NF-κB are predicted by Transfac analysis (23). The close proximity of the IRF-1 site and one of the NF-κB sites is characteristic of genes that are regulated by the synergistic action of TNFα and IFNγ, such as interleukin-6 (IL-6) and intercellular adhesion molecule-1 (24, 25), although ET-1 has not previously been recognized in this group.Our aims were, therefore, to investigate the role of NF-κB in ET-1 release by primary HPASM cells. In addition, we were interested in the role of histone acetylation in the epigenetic control of the ET-1 production. Understanding these novel mechanisms will allow a greater understanding of the pathogenesis of vascular remodeling in pulmonary vessels and aid in the development of new treatment strategies aimed at blocking synthesis of ET-1.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号