首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
《MABS-AUSTIN》2013,5(4):458-465
Brentuximab vedotin (SGN-35; Adcetris®) is an anti-CD30 antibody conjugated via a protease-cleavable linker to the potent anti-microtubule agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and transported to lysosomes where MMAE is released and binds to tubulin, leading to cell cycle arrest and apoptosis.

Several trials have shown durable antitumor activity with a manageable safety profile in patients with relapsed/refractory Hodgkin lymphoma, systemic anaplastic large cell lymphoma, or primary cutaneous CD30-positive lymphoproliferative disorders. Peripheral sensory neuropathy is a significant adverse event associated with brentuximab vedotin administration. Neuropathy symptoms are cumulative and dose-related. Multiple ongoing trials are currently evaluating brentuximab vedotin alone or in combination with other agents in relapsed/refractory patients, as well as patients with newly diagnosed disease.  相似文献   

2.
Brentuximab vedotin (SGN-35; Adcetris®) is an anti-CD30 antibody conjugated via a protease-cleavable linker to the potent anti-microtubule agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and transported to lysosomes where MMAE is released and binds to tubulin, leading to cell cycle arrest and apoptosis. Several trials have shown durable antitumor activity with a manageable safety profile in patients with relapsed/refractory Hodgkin lymphoma, systemic anaplastic large cell lymphoma, or primary cutaneous CD30-positive lymphoproliferative disorders. Peripheral sensory neuropathy is a significant adverse event associated with brentuximab vedotin administration. Neuropathy symptoms are cumulative and dose-related. Multiple ongoing trials are currently evaluating brentuximab vedotin alone or in combination with other agents in relapsed/refractory patients, as well as patients with newly diagnosed disease.  相似文献   

3.
Cardiac stromal cells (CSCs) can be derived from explant cultures, and a subgroup of these cells is viewed as cardiac mesenchymal stem cells due to their expression of CD90. Here, we sought to determine the therapeutic potential of CD90‐positive and CD90‐negative CSCs in a rat model of chronic myocardial infarction. We obtain CD90‐positive and CD90‐negative fractions of CSCs from rat myocardial tissue explant cultures by magnetically activated cell sorting. In vitro, CD90‐negative CSCs outperform CD90‐positive CSCs in tube formation and cardiomyocyte functional assays. In rats with a 30‐day infarct, injection of CD90‐negative CSCs augments cardiac function in the infarct in a way superior to that from CD90‐positive CSCs and unsorted CSCs. Histological analysis revealed that CD90‐negative CSCs increase vascularization in the infarct. Our results suggest that CD90‐negative CSCs could be a development candidate as a new cell therapy product for chronic myocardial infarction.  相似文献   

4.
《MABS-AUSTIN》2013,5(6):1149-1161
ABSTRACT

An anti-CD30 antibody-drug conjugate incorporating the antimitotic agent DM1 and a stable SMCC linker, anti-CD30-MCC-DM1, was generated as a new antitumor drug candidate for CD30-positive hematological malignancies. Here, the in vitro and in vivo pharmacologic activities of anti-CD30-MCC-DM1 (also known as F0002-ADC) were evaluated and compared with ADCETRIS (brentuximab vedotin). Pharmacokinetics (PK) and the safety profiles in cynomolgus monkeys were assessed. Anti-CD30-MCC-DM1 was effective in in vitro cell death assays using CD30-positive lymphoma cell lines. We studied the properties of anti-CD30-MCC-DM1, including binding, internalization, drug release and actions. Unlike ADCETRIS, anti-CD30-MCC-DM1 did not cause a bystander effect in this study. In vivo, anti-CD30-MCC-DM1 was found to be capable of inducing tumor regression in subcutaneous inoculation of Karpas 299 (anaplastic large cell lymphoma), HH (cutaneous T-cell lymphoma) and L428 (Hodgkin’s disease) cell models. The half-lives of 4 mg/kg and 12 mg/kg anti-CD30-MCC-DM1 were about 5 days in cynomolgus monkeys, and the tolerated dose was 30 mg/kg in non-human primates, supporting the tolerance of anti-CD30-MCC-DM1 in humans. These results suggest that anti-CD30-MCC-DM1 presents efficacy, safety and PK profiles that support its use as a valuable treatment for CD30-positive hematological malignancies.  相似文献   

5.
Aging is associated with impaired vaccine efficacy and increased susceptibility to infectious and malignant diseases. CD8+ T‐cells are key players in the immune response against pathogens and tumors. In aged mice, the dwindling naïve CD8+ T‐cell compartment is thought to compromise the induction of de novo immune responses, but no experimental evidence is yet available in humans. Here, we used an original in vitro assay based on an accelerated dendritic cell coculture system in unfractioned peripheral blood mononuclear cells to examine CD8+ T‐cell priming efficacy in human volunteers. Using this approach, we report that old individuals consistently mount quantitatively and qualitatively impaired de novo CD8+ T‐cell responses specific for a model antigen. Reduced CD8+ T‐cell priming capacity in vitro was further associated with poor primary immune responsiveness in vivo. This immune deficit likely arises as a consequence of intrinsic cellular defects and a reduction in the size of the naïve CD8+ T‐cell pool. Collectively, these findings provide new insights into the cellular immune insufficiencies that accompany human aging.  相似文献   

6.
CD44, a cell adhesion protein, involves in various process in cancer such as cell survival and metastasis. Most researches on CD44 in cancer focus on cancer cells. Recently, it is found that CD44 expression is high in fibroblasts of tumour microenvironment. However, its role in communication between fibroblasts and breast cancer cells is seldom known. In this study, CD44‐positive (CD44+Fbs) and CD44‐negative carcinoma‐associated fibroblasts (CD44?Fbs) were isolated and cocultured with breast cancer cells for analysis of cell survival and drug resistance. We found that CD44+Fbs promoted breast cancer cell survival and paclitaxel resistance and inhibited paclitaxel‐induced apoptosis. Our further research for the molecular mechanism showed that IGF2BP3 bound to CD44 mRNA and enhanced CD44 expression, which increased IGF2 levels of fibroblasts and then stimulated breast cancer cell proliferation and drug resistance. IGF2 was found to activate Hedgehog signal pathway in breast cancer cells. In conclusion, the results illustrated that in CD44+Fbs, binding of IGF2BP3 and CD44 promotes IGF2 expression and then accelerates breast cancer cell proliferation, survival and induced chemotherapy resistance likely by activating Hedgehog signal pathways.  相似文献   

7.
Many B‐cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK‐92 cells, a continuously growing NK cell line, showing that anti‐CD19‐CAR (αCD19‐CAR) engineered NK‐92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK‐92 cells. The ‘first generation’ CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc‐tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK‐92 and transduced αCD19‐CAR NK‐92 cells towards CD19 negative targets was found. However, αCD19‐CAR NK‐92 cells specifically and efficiently lysed CD19 expressing B‐precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK‐92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK‐92 should be considered a treatment option for patients with lymphoid malignancies.  相似文献   

8.
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.  相似文献   

9.
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.  相似文献   

10.
Expression of the T‐cell receptor (TCR):CD3 complex is tightly regulated during T‐cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ε proline‐rich sequence, Lck, c‐Cbl, and SLAP, which collectively trigger the dynamin‐dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ‐monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T‐cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T‐cell development.  相似文献   

11.
12.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.  相似文献   

13.
The development and function of B lymphocytes is regulated by numerous signaling pathways, some emanating from the B‐cell antigen receptor (BCR). The spleen tyrosine kinase (Syk) plays a central role in the activation of the BCR, but less is known about its contribution to the survival and maintenance of mature B cells. We generated mice with an inducible and B‐cell‐specific deletion of the Syk gene and found that a considerable fraction of mature Syk‐negative B cells can survive in the periphery for an extended time. Syk‐negative B cells are defective in BCR, RP105 and CD38 signaling but still respond to an IL‐4, anti‐CD40, CpG or LPS stimulus. Our in vivo experiments show that Syk‐deficient B cells require BAFF receptor and CD19/PI3K signaling for their long‐term survival. These studies also shed a new light on the signals regulating the maintenance of the normal mature murine B‐cell pool.  相似文献   

14.
We explored the role of microRNA‐30a (miR‐30a) and the mechanism involved in hepatic fibrosis. MiR‐30a overexpression was achieved by miR‐30a mimics transfection in hepatic stellate cells (HSCs) (HSC‐T6, LX‐2), and miR‐30a agomir (ago‐miR‐30a) treatment in mice. MiR‐30a levels were measured using TaqMan miRNA assay system, and the localization of miR‐30a was detected by fluorescence in situ hybridization (FISH). The interaction of miR‐30a and Beclin1 was confirmed by dual‐luciferase reporter assay. Autophagic flux was analysed using tandem mRFP‐GFP‐LC3 fluorescence microscopy, electron microscopy and Western blot of LC3‐II/I ratio. MiR‐30a was notably down‐regulated in activated HSCs and LX‐2‐exosomes induced by TGF‐β1; overexpression of miR‐30a down‐regulated extracellular matrix (ECM), such as α‐SMA, TIMP‐1, and Collagen I expression, and suppressed cell viability in HSCs. MiR‐30a was significantly down‐regulated in hepatic fibrosis mice and overexpression of miR‐30a prevented BDL‐induced fibrogenesis, concomitant with the down‐regulation of ECM. MiR‐30a inhibited HSCs autophagy and increased lipid accumulation in HSCs and in mice fibrotic hepatic tissues. MiR‐30a inhibited its downstream effector of Beclin1 by direct targeting its 3′‐UTR region. Moreover, Knock‐down of Beclin1 by small interfering RNA (siRNA) inhibited HSC autophagy and activation in LX‐2 cells. In conclusion, miR‐30a is down‐regulated in hepatic fibrosis models and its overexpression prevents liver fibrogenesis by directly suppressing Beclin1‐mediated autophagy; therefore, miR‐30a may be a new potential therapeutic target for controlling hepatic fibrosis.  相似文献   

15.
Detection of the optimal cell transplantation strategy for myocardial infarction (MI) has attracted a great deal of attention. Commitment of engrafted cells to angiogenesis within damaged myocardium is regarded as one of the major targets in cell‐based cardiac repair. Bone marrow–derived CD34‐positive cells, a well‐characterized population of stem cells, might represent highly functional endothelial progenitor cells and result in the formation of new blood vessels. Recently, physical microenvironment (extracellular matrix stiffness) around the engrafted cells was found to exert an essential impact on their fate. Stem cells are able to feel and respond to the tissue‐like matrix stiffness to commit to a relevant lineage. Notably, the infarct area after MI experiences a time‐dependent stiffness change from flexible to rigid. Our previous observations demonstrated myocardial stiffness‐dependent differentiation of the unselected bone marrow–derived mononuclear cells (BMMNCs) along endothelial lineage cells. Myocardial stiffness (~42 kPa) within the optimal time domain of cell engraftment (at week 1 to 2) after MI provided a more favourable physical microenvironment for cell specification and cell‐based cardiac repair. However, the difference in tissue stiffness‐dependent cell differentiation between the specific cell subsets expressing and no expressing CD34 phenotype remains uncertain. We presumed that CD34‐positive cell subsets facilitated angiogenesis and subsequently resulted in cardiac repair under induction of infarcted myocardium‐like matrix stiffness compared with CD34‐negative cells. If the hypothesis were true, it would contribute greatly to detect the optimal cell subsets for cell therapy and to establish an optimized therapy strategy for cell‐based cardiac repair.  相似文献   

16.
MPT63 protein is found only in Mycobacterium tuberculosis complex, including M. tuberculosis and M. bovis. Detection of MPT63‐specific IFN‐γ‐secreting T cells could be useful for the diagnosis of tuberculosis (TB) diseases. In the present study, the HLA‐A*0201 restriction of ten predicted MPT63‐derived CD8 + T‐cell epitopes was assessed on the basis of T2 cell line and HLA‐A*0201 transgenic mice. The diagnostic potential of immunogenic peptides in active pulmonary TB patients was evaluated using an IFN‐γ enzyme‐linked immunospot assay. It was found that five peptides bound to HLA‐A*0201 with high affinity, whereas the remaining peptides exhibited low affinity for HLA‐A*0201. Five immunogenic peptides (MPT6318–26, MPT6329–37, MPT6320–28, MPT635–14 and MPT6310–19) elicited large numbers of cytotoxic IFN‐γ‐secreting T cells in HLA‐A*0201 transgenic mice. Each of the five immunogenic peptides was recognized by peripheral blood mononuclear cells from 45% to 73% of 40 HLA‐A*0201 positive TB patients. The total diagnostic sensitivity of the five immunogenic peptides was higher than that of a T‐SPOT.TB assay (based on ESAT‐6 and CFP‐10) (93% versus 90%). It is noticeable that the diagnostic sensitivity of the combination of five immunogenic peptides and T‐SPOT.TB assay reached 100%. These MPT63‐derived HLA‐A*0201‐restricted CD8 + T‐cell epitopes would likely contribute to the immunological diagnosis of M. tuberculosis infection and may provide the components for designing an effective TB vaccine.  相似文献   

17.
Perception of microbe‐associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen‐activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho‐signaling transduction pathway from PRR‐mediated pathogen recognition to MAPK activation in plants. We found that the receptor‐like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1‐LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin‐induced MAPK activation and disease resistance to Alternaria brassicicola. PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo. Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin‐induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.  相似文献   

18.
After thymic emigration CD4‐T‐cells continue to differentiate into multiple effector and suppressor sublineages in peripheral lymphoid organs. In vivo analysis of peripheral CD4‐T‐cell differentiation has relied on animal models with targeted gene mutations. These are expressed either constitutively or conditionally after Cre mediated recombination. Available Cre transgenic strains to specifically target T‐cells act at stages of thymocyte development that precede thymic selection. Tracing gene functions in CD4‐T‐cell development after thymic exit becomes complicated when the targeted gene is essential during thymic development. Other approaches to conditionally modify gene functions in peripheral T‐cells involve infection of in vitro activated cells with Cre expressing lenti‐, retro‐, or adenoviruses, which precludes in vivo analyses. To study molecular mechanisms of peripheral CD4‐T‐cell differentiation in vivo and in vitro we generated transgenic mice expressing a tamoxifen inducible Cre recombinase (CreERT2) under the control of the CD4 gene promoter. We show here that in CD4CreERT2 mice Cre is inducibly and selectively activated in CD4‐T‐cells. Tamoxifen treatment both in vivo and in vitro results in efficient recombination of loci marked by LoxP sites. Moreover, this strain shows no abnormalities related to transgene insertion. Therefore it provides a valuable tool for studying gene function during differentiation of naïve peripheral CD4‐T‐cells into effector or suppressor sub‐lineages. genesis 50:908–913, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Human nasopharyngeal carcinoma is a common head and neck malignancy with high incidence in Southeast Asia and Southern China. It is necessary to develop safe, effective and inexpensive anticancer agents to improve the therapeutics of patients with nasopharyngeal carcinoma. A series of small molecular compounds based on 6‐(pyrimidin‐4‐yl)‐1H‐indazole were synthesized and evaluated for antiproliferative activities against human nasopharyngeal carcinoma cell lines SUNE1. Compounds 6b , 6c , 6e and 6l showed potent antiproliferative activities similar to positive control drug cisplatin in vitro with lower nephrotoxicity than it. N‐[4‐(1H‐Indazol‐6‐yl)pyrimidin‐2‐yl]benzene‐1,3‐diamine ( 6l ) was selected for further study. It was found that 6l induced mitochondria‐mediated apoptosis and G2/M phase arrest in SUNE1 cells. Furthermore, compound 6l at 10 mg/kg can suppress the growth of an implanted SUNE1 xenograft with a TGI% (tumor growth inhibition) value of 50 % and did not cause serious side effects in BALB/c nude mice. This study suggests that 6‐(pyrimidin‐4‐yl)‐1H‐indazole derivatives are a series of small molecule compounds with anti‐nasopharyngeal carcinoma activities.  相似文献   

20.
Bryostatin‐1 (Bry‐1) has been proven to be effective and safe in clinical trials of a variety of immune‐related diseases. However, little is known about its effect on Crohn's disease (CD). We aimed to investigate the impact of Bry‐1 on CD‐like colitis and determine the mechanism underlying this effect. In the present study, 15‐week‐old male Il‐10?/? mice with spontaneous colitis were divided into positive control and Bry‐1‐treated (Bry‐1, 30 μg/kg every other day, injected intraperitoneally for 4 weeks) groups. Age‐matched, male wild‐type (WT) mice were used as a negative control. The effects of Bry‐1 on colitis, intestinal barrier function and T cell responses as well as the potential regulatory mechanisms were evaluated. We found that the systemic delivery of Bry‐1 significantly ameliorated colitis in Il‐10?/? mice, as demonstrated by decreases in the disease activity index (DAI), inflammatory score and proinflammatory mediator levels. The protective effects of Bry‐1 on CD‐like colitis included the maintenance of intestinal barrier integrity and the helper T cell (Th)/regulatory T cell (Treg) balance. These effects of Bry‐1 may act in part through nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling activation and STAT3/4 signalling inhibition. The protective effect of Bry‐1 on CD‐like colitis suggests Bry‐1 has therapeutic potential in human CD, particularly given the established clinical safety of Bry‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号