首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid‐β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal‐binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1–16 fused to the N‐terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti‐Aβ N‐terminal antibody WO2. The structure demonstrates that Aβ residues 10–16, which are not in complex with the antibody, adopt a mixture of local polyproline II‐helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aβ (residues, 10–16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13‐metal‐His14 coordination in the Aβ1–16 fragment implicated in Aβ metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aβ and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N‐terminal monomer structure, in particular residues His13 and His14, and preventing Aβ metal‐binding‐induced neurotoxicity.Proteins 2013; 81:1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Among the pathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid‐β (Aβ) peptides, primarily Aβ (1–40) and Aβ (1–42), in the brain as senile plaques. A large body of evidence suggests that cognitive decline and dementia in AD patients arise from the formation of various aggregated forms of Aβ, including oligomers, protofibrils and fibrils. Hence, there is increasing interest in designing molecular agents that can impede the aggregation process and that can lead to the development of therapeutically viable compounds. Here, we demonstrate the ability of the specifically designed α,β‐dehydroalanine (ΔAla)‐containing peptides P1 (K‐L‐V‐F‐ΔA‐I‐ΔA) and P2 (K‐F‐ΔA‐ΔA‐ΔA‐F) to inhibit Aβ (1–42) aggregation. The mechanism of interaction of the two peptides with Aβ (1–42) seemed to be different and distinct. Overall, the data reveal a novel application of ΔAla‐containing peptides as tools to disrupt Aβ aggregation that may lead to the development of anti‐amyloid therapies not only for AD but also for many other protein misfolding diseases. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 456–465, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
The population of brain pericytes, a cell type important for vessel stability and blood brain barrier function, has recently been shown altered in patients with Alzheimer's disease (AD). The underlying reason for this alteration is not fully understood, but progressive accumulation of the AD characteristic peptide amyloid‐beta (Aβ) has been suggested as a potential culprit. In the current study, we show reduced number of hippocampal NG2+ pericytes and an association between NG2+ pericyte numbers and Aβ1‐40 levels in AD patients. We further demonstrate, using in vitro studies, an aggregation‐dependent impact of Aβ1‐40 on human NG2+ pericytes. Fibril‐EP Aβ1‐40 exposure reduced pericyte viability and proliferation and increased caspase 3/7 activity. Monomer Aβ1‐40 had quite the opposite effect: increased pericyte viability and proliferation and reduced caspase 3/7 activity. Oligomer‐EP Aβ1‐40 had no impact on either of the cellular events. Our findings add to the growing number of studies suggesting a significant impact on pericytes in the brains of AD patients and suggest different aggregation forms of Aβ1‐40 as potential key regulators of the brain pericyte population size.  相似文献   

5.
Lactoferrin (Lf), a cationic iron‐binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron‐free bovine lactoferrin (apo‐bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron‐free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric‐bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl‐2, Sirt1, Mcl‐1, and PARP‐1 were modulated by 1.25 μM of apo‐bLf. In the same cell line, apo‐bLf induced apoptosis together with poly (ADP‐ribose) polymerase cleavage, caspase activation, and a significant drop of NAD+. In addition, apo‐bLf–treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo‐bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.  相似文献   

6.
The aggregation of the Aβ plays a fundamental role in the pathology of AD. Recently, N‐terminally modified Aβ species, pE‐Aβ, have been described as major constituents of Aβ deposits in the brains of AD patients. pE‐Aβ has an increased aggregation propensity and shows increased toxicity compared with Aβ1‐40 and Aβ1‐42. In the present work, high‐resolution NMR spectroscopy was performed to study pE‐Aβ3‐40 in aqueous TFE‐containing solution. Two‐dimensional TOCSY and NOESY experiments were performed. On the basis of NOE and chemical shift data, pE‐Aβ3‐40 was shown to contain two helical regions formed by residues 14–22 and 30–36. This is similar as previously described for Aβ1‐40. However, the secondary chemical shift data indicate decreased helical propensity in pE‐Aβ3‐40 when compared with Aβ1‐40 under exactly the same conditions. This is in agreement with the observation that pE‐Aβ3‐40 shows a drastically increased tendency to form β‐sheet‐rich structures under more physiologic conditions. Structural studies of pE‐Aβ are crucial for better understanding the structural basis of amyloid fibril formation in the brain during development of AD, especially because an increasing number of reports indicate a decisive role of pE‐Aβ for the pathogenesis of AD. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Alzheimer's disease (AD) is hallmarked by amyloid‐β (Aβ) peptides accumulation and aggregation in extracellular plaques, preceded by intracellular accumulation. We examined whether intracellular Aβ can be cleared by cytosolic peptidases and whether this capacity is affected during progression of sporadic AD (sAD) in humans and in the commonly used APPswePS1dE9 and 3xTg‐AD mouse models. A quenched Aβ peptide that becomes fluorescent upon degradation was used to screen for Aβ‐degrading cytoplasmic peptidases cleaving the aggregation‐prone KLVFF region of the peptide. In addition, this quenched peptide was used to analyze Aβ‐degrading capacity in the hippocampus of sAD patients with different Braak stages as well as APPswePS1dE9 and 3xTg‐AD mice. Insulin‐degrading enzyme (IDE) was found to be the main peptidase that degrades cytoplasmic, monomeric Aβ. Oligomerization of Aβ prevents its clearance by IDE. Intriguingly, the Aβ‐degrading capacity decreases already during the earliest Braak stages of sAD, and this decline correlates with IDE protein levels, but not with mRNA levels. This suggests that decreased IDE levels could contribute to early sAD. In contrast to the human data, the commonly used APPswePS1dE9 and 3xTg‐AD mouse models do not show altered Aβ degradation and IDE levels with AD progression, raising doubts whether mouse models that overproduce Aβ peptides are representative for human sAD.  相似文献   

8.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β‐amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase‐3, activity is a prominent feature of AD brain. In addition, we observe increased calpain‐mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1–42. We also show that exposure of primary cortical neurons to oligomeric Aβ1–42 results in calpain‐dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.  相似文献   

9.
Alzheimer's disease (AD) is a devastating disorder that is clinically characterized by a comprehensive cognitive decline. Accumulation of the amyloid‐beta (Aβ) peptide plays a pivotal role in the pathogenesis of AD. In AD, the conversion of Aβ from a physiological soluble monomeric form into insoluble fibrillar conformation is an important event. The most toxic form of Aβ is oligomers, which is the intermediate step during the conversion of monomeric form to fibrillar form. There are at least two types of oligomers: oligomers that are immunologically related to fibrils and those that are not. In transgenic AD animal models, both active and passive anti‐Aβ immunotherapies improve cognitive function and clear the parenchymal accumulation of amyloid plaques in the brain. In this report we studied effect of immunotherapy of two sequence‐independent non‐fibrillar oligomer specific monoclonal antibodies on the cognitive function, amyloid load and tau pathology in 3xTg‐AD mice. Anti‐oligomeric monoclonal antibodies significantly reduce the amyloid load and improve the cognition. The clearance of amyloid load was significantly correlated with reduced tau hyperphosphorylation and improvement in cognition. These results demonstrate that systemic immunotherapy using oligomer‐specific monoclonal antibodies effectively attenuates behavioral and pathological impairments in 3xTg‐AD mice. These findings demonstrate the potential of using oligomer specific monoclonal antibodies as a therapeutic approach to prevent and treat Alzheimer's disease.  相似文献   

10.
Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains "hot spots" of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The "hot spots" of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD.  相似文献   

11.
Amyloid beta (Aβ) aggregation and oxidative stress are two of the central events in Alzheimer's Disease (AD). Both these phenomena can be caused by the interaction of Aβ with metal ions. In the last years the interaction between ZnII, CuII, and Aβ was much studied, but between iron and Aβ it is still little known. In this work we determine how three Aβ peptides, present in AD, interact with FeIII‐citrate. The three Aβ peptides are: full length Aβ1‐42, an isoform truncated at Glutamic acid in position three, Aβ3‐42, and its pyroglutamated form AβpE3‐42. Conformation and morphology of the three peptides, aggregated with and without FeIII‐citrate were studied. Besides, we have determined the strength of the interactions Aβ/FeIII‐citrate studying the effect of ethylenediaminetetraacetic acid as chelator. Results reported here demonstrate that FeIII‐citrate promotes the aggregation in all the three peptides. Moreover, Aspartic acid 1, Glutamic acid 3, and Tyrosine 10 have an important role in the coordination with iron, generating a more stable complex for Aβ1‐42 compared to that for the truncated peptides.  相似文献   

12.
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The brain is particularly vulnerable to oxidative damage induced by unregulated redox-active metals such as copper and iron, and the brains of AD patients display evidence of metal dyshomeostasis and increased oxidative stress. The colocalisation of copper and amyloid β (Aβ) in the glutamatergic synapse during NMDA-receptor-mediated neurotransmission provides a microenvironment favouring the abnormal interaction of redox-potent Aβ with copper under conditions of copper dysregulation thought to prevail in the AD brain, resulting in the formation of neurotoxic soluble Aβ oligomers. Interactions between Aβ oligomers and copper can further promote the aggregation of Aβ, which is the core component of extracellular amyloid plaques, a central pathological hallmark of AD. Copper dysregulation is also implicated in the hyperphosphorylation and aggregation of tau, the main component of neurofibrillary tangles, which is also a defining pathological hallmark of AD. Therefore, tight regulation of neuronal copper homeostasis is essential to the integrity of normal brain functions. Therapeutic strategies targeting interactions between Aβ, tau and metals to restore copper and metal homeostasis are discussed.  相似文献   

13.
郑玮  王占友 《生命科学》2012,(8):833-846
锌是中枢神经系统含量最丰富的过渡金属元素之一,对维持中枢神经系统正常生理功能具有重要作用,其稳态失衡与多种疾病有关。阿尔茨海默病是一种多病因神经退行性疾病,以β-淀粉样斑块形成和神经原纤维缠结为主要病理特征。研究表明,脑锌代谢紊乱在阿尔茨海默病发病过程中扮演重要角色,但确切机制尚不十分清楚。综述了脑锌代谢和稳态调控以及锌和锌转运蛋白参与β-淀粉样蛋白沉积与老年斑形成的病理过程,并探讨了金属一蛋白阻尼复合物如何通过恢复脑锌稳态延缓疾病进程、改善患者认知能力的治疗策略。  相似文献   

14.
Copper‐Zinc superoxide dismutase 1 (SOD1) is a homodimeric enzyme that protects cells from oxidative damage. Hereditary and sporadic amyotrophic lateral sclerosis may be linked to SOD1 when the enzyme is destabilized through mutation or environmental stress. The cytotoxicity of demetallated or apo‐SOD1 aggregates may be due to their ability to cause defects within cell membranes by co‐aggregating with phospholipids. SOD1 monomers may associate with the inner cell membrane to receive copper ions from membrane‐bound copper chaperones. But how apo‐SOD1 interacts with lipids is unclear. We have used atomistic molecular dynamics simulations to reveal that flexible electrostatic and zinc‐binding loops in apo‐SOD1 dimers play a critical role in the binding of 1‐octanol clusters and phospholipid bilayer, without any significant unfolding of the protein. The apo‐SOD1 monomer also associates with phospholipid bilayer via its zinc‐binding loop rather than its exposed hydrophobic dimerization interface. Our observed orientation of the monomer on the bilayer would facilitate its association with a membrane‐bound copper chaperone. The orientation also suggests how membrane‐bound monomers could act as seeds for membrane‐associated SOD1 aggregation. Proteins 2014; 82:3194–3209. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27‐hydroxycholesterol (27‐OH) and 24‐hydroxycholesterol (24‐OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK‐N‐BE human neuroblastoma cells with patho‐physiologically relevant amounts of 27‐OH and 24‐OH showed that both oxysterols induce a net synthesis of Aβ1‐42 by up‐regulating expression levels of amyloid precursor protein and β‐secretase, as well as the β‐secretase activity. Interestingly, cell pretreatment with N‐acetyl‐cysteine (NAC) fully prevented the enhancement of β‐amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β‐amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols‐induced Aβ toxic peptide accumulation in the brain.  相似文献   

16.
Ginsenoside‐Rg1 is one of the pharmacologically active components isolated from ginseng. It was reported that Rg1 protected dopamine (DA) neurons in 6‐hydroxydopamine (6‐OHDA)‐induced Parkinson's disease (PD) models in vivo and in vitro. Our previous study also demonstrated that iron accumulation was involved in the toxicity of 6‐OHDA. However, whether Rg1 could protect DA neurons against 6‐OHDA toxicity by modulating iron accumulation and iron‐induced oxidative stress is not clear. Therefore, the present study was carried out to elucidate this effect in 6‐OHDA‐treated MES23.5 cells and the possible mechanisms were also conducted. Findings showed Rg1 restored iron‐induced decrease in mitochondrial transmembrane potential in MES23.5 cells, and increased ferrous iron influx was found in 6‐OHDA‐treated cells. Rg1 pretreatment could decrease this iron influx by inhibiting 6‐OHDA‐induced up‐regulation of an iron importer protein divalent metal transporter 1 with iron responsive element (DMT1 + IRE). Furthermore, findings also showed that the effect of Rg1 on DMT1 + IRE expression was due to its inhibition of iron regulatory proteins (IRPs) by its antioxidant effect. These results suggested that the neuroprotective effect of Rg1 against iron toxicity in 6‐OHDA‐treated cells was to decrease the cellular iron accumulation and attenuate the improper up‐regulation of DMT1 + IRE via IRE/IRP system. This provides new insight to understand the pharmacological effects of Rg1 on iron‐induced degeneration of DA neurons. J. Cell. Biochem. 111: 1537–1545, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
ß‐Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti‐Aβ‐antibodies, termed Aβ‐nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ‐specific nanobodies was identified by proteolytic epitope extraction‐ and excision‐mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC‐protease, and LysC‐protease). Matrix‐assisted laser desorption ionization – mass spectrometric analysis of the affinity – elution fraction provided the epitope, Aβ(17–28), in the mid‐ to carboxy‐terminal domain of Aβ, which has been shown to exert an Aß‐fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17–28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1–40) or Aβ‐peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ‐nanobodies and Aβ(1–40) and the Aβ(17–28) epitope provided KD values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ‐aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We engineered and employed a chaperone‐like amyloid‐binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross‐reacted with amyloid beta‐peptide (Aβ42) protofibrils, but not with Aβ40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1‐hIAPP complex cross‐react with Aβ42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation‐specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation‐sensitive and sequence‐independent and can target more than one type of protofibril species.  相似文献   

20.
Down syndrome (DS) results in an overproduction of amyloid‐β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12–30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre‐clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid‐based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号