首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

2.
Objective: The scavenger receptor CD36 facilitates the cellular uptake of long‐chain fatty acids. As CD36‐deficiency attenuates the development of high fat diet (HFD)‐induced obesity, the role of CD36‐deficiency in preadipocyte recruitment and adipocyte function was set out to characterize. Design and Methods: Fat cell size and number were determined in gonadal, visceral, and subcutaneous adipose tissue of CD36?/? and WT mice after 6 weeks on HFD. Basal lipolysis and insulin‐inhibited lipolysis were investigated in gonadal adipose tissue. Results: CD36?/? mice showed a reduction in adipocyte size in all fat pads. Gonadal adipose tissue also showed a lower total number of adipocytes because of a lower number of very small adipocytes (diameter <50 μm). This was accompanied by an increased pool of preadipocytes, which suggests that CD36‐deficiency reduces the capacity of preadipocytes to become adipocytes. Regarding lipolysis, in adipose tissue from CD36?/? mice, cAMP levels were increased and both basal and 8‐bromo‐cAMP stimulated lipolysis were higher. However, insulin‐mediated inhibition of lipolysis was more potent in CD36?/? mice. Conclusions: These results indicate that during fat depot expansion, CD36‐deficiency negatively affects preadipocyte recruitment and that in mature adipocytes, CD36‐deficiency is associated with increased basal lipolysis and insulin responsiveness.  相似文献   

3.
Caspase recruitment domains‐containing protein 9 (CARD9) is an adaptor molecule critical for key signalling pathways initiated through C‐type lectin receptors (CLRs). Previous studies demonstrated that Pneumocystis organisms are recognised through a variety of CLRs. However, the role of the downstream CARD9 adaptor signalling protein in host defence against Pneumocystis infection remains to be elucidated. Herein, we analysed the role of CARD9 in host defence against Pneumocystis both in CD4‐depleted CARD9?/? and immunocompetent hosts. Card9 gene‐disrupted (CARD9?/?) mice were more susceptible to Pneumocystis, as evidenced by reduced fungal clearance in infected lungs compared to wild‐type (WT) infected mice. Our data suggests that this defect was due to impaired proinflammatory responses. Furthermore, CARD9?/? macrophages were severely compromised in their ability to differentiate and express M1 and M2 macrophage polarisation markers, to enhanced mRNA expression for Dectin‐1 and Mincle, and most importantly, to kill Pneumocystis in vitro. Remarkably, compared to WT mice, and despite markedly increased organism burdens, CARD9?/? animals did not exhibit worsened survival during pneumocystis pneumonia (PCP), perhaps related to decreased lung injury due to altered influx of inflammatory cells and decreased levels of proinflammatory cytokines in response to the organism. Finally, although innate phase cytokines were impaired in the CARD9?/? animals during PCP, T‐helper cell cytokines were normal in immunocompetent CARD9?/? animals infected with Pneumocystis. Taken together, our data demonstrate that CARD9 has a critical function in innate immune responses against Pneumocystis.  相似文献   

4.
Obesity often leads to obesity‐related cardiac hypertrophy (ORCH), which is suppressed by zinc‐induced inactivation of p38 mitogen‐activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4‐week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B‐cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate‐treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate‐induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate‐induced up‐regulation of BCL10 and phospho‐p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress‐mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress‐activated BCL10 expression and p38 MAPK activation.  相似文献   

5.

Background

Chronic stress is a major contributor in the development of metabolic syndrome and associated diseases, such as diabetes. High-fat diet (HFD) and sex are known modifiers of metabolic parameters. Peptide hormones corticotropin-releasing factor (CRF) and urocortins (UCN) mediate stress responses via activation and feedback to the hypothalamic-pituitary-adrenal (HPA) axis. UCN3 is a marker of pancreatic β-cell differentiation, and UCN2 is known to ameliorate glucose levels in mice rendered diabetic with HFD. CRF receptor 2 (CRF2) is the only known cognate receptor for UCN2/3. Here, we ascertained the role of CRF2 in glucose clearance, insulin sensitivity, and other parameters associated with metabolic syndrome in a mouse model of nutritional stress.

Methods

Wild-type (WT) and Crhr2?/? (null) mice of both sexes were fed either normal chow diet or HFD. After 8 weeks, blood glucose levels in response to glucose and insulin challenge were determined. Change in body and fat mass, plasma insulin, and lipid profile were assessed. Histological evaluation of liver sections was performed.

Results

Here, we show that genotype (Crhr2), sex, and diet were all independent variables in the regulation of blood glucose levels, body and fat mass gain/redistribution, and insulin resistance. Surprisingly, CRF2-deficient mice (Crhr2?/?) male mice showed similarly impaired glucose clearance on HFD and chow. HFD-fed female Crhr2?/? mice redistributed their fat depots that were distinct from wild-type females and male mice on either diet. Blood cholesterol and low-density lipoprotein (LDL) levels were elevated significantly in male Crhr2?/? mice; female Crhr2?/? mice were protected. Male, but not female Crhr2?/? mice developed peripheral insulin resistance. HFD, but not chow-fed wild-type male mice developed hepatic macrovesicular steatosis. In contrast, livers of Crhr2?/? male mice showed microvesicular steatosis on either diet, whereas livers of female mice on this 8-week HFD regimen did not develop steatosis.

Conclusions

CRF2 receptor dysregulation is a sexually dimorphic risk factor in development of pre-diabetic and metabolic symptoms.
  相似文献   

6.
The purinergic receptor P2Y2 binds ATP to control chemotaxis of myeloid cells, and global P2Y2 receptor knockout mice are protected in models of acute inflammation. Chronic inflammation mediated by macrophages and other immune cells in adipose tissue contributes to the development of insulin resistance. Here, we investigate whether mice lacking P2Y2 receptors on myeloid cells are protected against acute and chronic inflammation. Wild-type mice were transplanted with either wild-type or P2Y2 receptor null bone marrow and treated with a sublethal dose of endotoxin as a model of acute inflammation, or fed a high-fat diet to induce obesity and insulin resistance as a model of chronic inflammation. P2Y2?/? chimeric mice were protected against acute inflammation. However, high-fat diet feeding induced comparable inflammation and insulin resistance in both WT and P2Y2?/? chimeric mice. Of note, confocal microscopy revealed significantly fewer crown-like structures, assemblies of macrophages around adipocytes, in P2Y2?/? chimeric mice compared to WT chimeric mice. We conclude that P2Y2 receptors on myeloid cells are important in mediating acute inflammation but are dispensable for the development of whole body insulin resistance in diet-induced obese mice.  相似文献   

7.
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI?/?) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI?/? mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI?/? mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.  相似文献   

8.
9.
Abnormalities in eNOS gene, possibly interacting with high fat diet (HFD), affect peripheral vascular function and glucose metabolism. The relative role of eNOS gene, HFD and metabolic derangement on coronary function has not been fully elucidated. We test whether eNOS gene deficiency per se or in association with HFD modulates coronary function through mechanisms involving molecular pathways related to insulin signaling. Wild type (WT), eNOS−/− and eNOS+/− mice were studied. WT and eNOS+/− mice were fed with either standard or HF diet for 16 weeks and compared with standard diet fed eNOS−/−. Glucose and insulin tolerance tests were performed during the last week of diet. Coronary resistance (CR) was measured at baseline and during infusions of acetylcholine (Ach) or sodium-nitroprusside (SNP) to evaluate endothelium-dependent or independent vasodilation, in the Langendorff isolated hearts. Cardiac expression of Akt and ERK genes as evaluation of two major insulin-regulated signaling pathways involved in the control of vascular tone were assessed by western blot. HFD-fed mice developed an overt diabetic state. Conversely, chow-fed genetically modified mice (in particular eNOS−/−) showed a metabolic pattern characterized by normoglycemia and hyperinsulinemia with a limited degree of insulin resistance. CR was significantly higher in animals with eNOS gene deletions than in WT, independently of diet. Percent decrease in CR, during Ach infusion, was significantly lower in both eNOS−/− and eNOS+/− mice than in WT, independently of diet. SNP reduced CR in all groups except eNOS−/−. The cardiac ERK1-2/Akt ratio, increased in animals with eNOS gene deletions compared with WT, independently of diet. These results suggest that the eNOS genetic deficiency, associated or not with HFD, has a relevant effect on coronary vascular function, possibly mediated by increase in blood insulin levels and unbalance in insulin-dependent signaling in coronary vessels, consistent with a shift towards a vasoconstrictive pattern.  相似文献   

10.
The aggrecanase ADAMTS5 (A Disintegrin and Metalloproteinase with ThromboSpondin type 1 motifs, member 5) and the cleavage of its substrate versican have been implicated in the development of heart valves. Furthermore, ADAMTS5 deficiency was shown to protect against diet‐induced obesity, a known risk factor for cardiovascular disease. Therefore, in this study, we investigated the potential role of ADAMTS5 in cardiac function using ADAMTS5‐deficient (Adamts5?/?) mice and their wild‐type (Adamts5+/+) counterparts exposed to a standard‐fat or a high‐fat diet (HFD). Eight‐weeks‐old Adamts5?/? and Adamts5+/+ mice were exposed to each diet for 15 weeks. Cardiac function and electrophysiology were analyzed by transthoracic echocardiogram and electrocardiogram at the end of the study. Cleavage of versican, as detected by the appearance of the DPEEAE neo‐epitope on western blotting with protein extracts, was defective in the heart of HFD‐treated Adamts5?/? as compared with Adamts5+/+ mice. ADAMTS5 deficiency led to statistically significant increases in diastolic posterior wall thickness (0.94 ± 0.023 vs. 0.82 ± 0.036 mm; P = 0.0056) and left ventricle volume (47 ± 4.5 vs. 31 ± 2.5 μL; P = 0.0043) in comparison to Adamts5+/+ mice, but only in animals on a HFD. Cardiac function parameters such as ejection fraction, fractional shortening, and stroke volume were unaffected by ADAMTS5 deficiency or diet. Electrocardiogram analysis revealed no ADAMTS5‐specific changes in either diet group. Thus, in the absence of ADAMTS5, cleavage of versican in the cardiac extracellular matrix is impaired, but cardiac function, even upon exposure to a HFD, is not markedly affected.  相似文献   

11.
Alterations in the immune cell profile and the induction of inflammation within adipose tissue are a hallmark of obesity in mice and humans. Dual-specificity phosphatase 2 (DUSP2) is widely expressed within the immune system and plays a key role promoting immune and inflammatory responses dependent on mitogen-activated protein kinase (MAPK) activity. We hypothesised that the absence of DUSP2 would protect mice against obesity-associated inflammation and insulin resistance. Accordingly, male and female littermate mice that are either wild-type (wt) or homozygous for a germ-line null mutation of the dusp2 gene (dusp2−/−) were fed either a standard chow diet (SCD) or high fat diet (HFD) for 12 weeks prior to metabolic phenotyping. Compared with mice fed the SCD, all mice consuming the HFD became obese, developed glucose intolerance and insulin resistance, and displayed increased macrophage recruitment and markers of inflammation in epididymal white adipose tissue. The absence of DUSP2, however, had no effect on the development of obesity or adipose tissue inflammation. Whole body insulin sensitivity in male mice was unaffected by an absence of DUSP2 in response to either the SCD or HFD; however, HFD-induced insulin resistance was slightly, but significantly, reduced in female dusp2−/− mice. In conclusion, DUSP2 plays no role in regulating obesity-associated inflammation and only a minor role in controlling insulin sensitivity following HFD in female, but not male, mice. These data indicate that rather than DUSP2 being a pan regulator of MAPK dependent immune cell mediated inflammation, it appears to differentially regulate inflammatory responses that have a MAPK component.  相似文献   

12.
Peroxisomes play a central role in lipid metabolism. We previously demonstrated that Pex11a deficiency impairs peroxisome abundance and fatty acid β‐oxidation and results in hepatic triglyceride accumulation. The role of Pex11a in dyslipidaemia and obesity is investigated here with Pex11a knockout mice (Pex11a?/?). Metabolic phenotypes including tissue weight, glucose tolerance, insulin sensitivity, cholesterol levels, fatty acid profile, oxygen consumption, physical activity were assessed in wild‐type (WT) and Pex11a?/? fed with a high‐fat diet. Molecular changes and peroxisome abundance in adipose tissue were evaluated through qRT‐PCR, Western blotting, and Immunofluorescence. Pex11a?/? showed increased fat mass, decreased skeletal muscle, higher cholesterol levels, and more severely impaired glucose and insulin tolerance. Pex11a?/? consumed less oxygen, indicating a decrease in fatty acid oxidation, which is consistent with the accumulation of very long‐ and long‐chain fatty acids. Adipose palmitic acid (C16:0) levels were elevated in Pex11a?/?, which may be because of dramatically increased fatty acid synthase mRNA and protein levels. Furthermore, Pex11a deficiency increased ventricle size and macrophage infiltration, which are related to the reduced physical activity. These data demonstrate that Pex11a deficiency impairs physical activity and energy expenditure, decreases fatty acid β‐oxidation, increases de novo lipogenesis and results in dyslipidaemia and obesity.  相似文献   

13.
Objective: To investigate the involvement of hypoadiponectinemia and inflammation in coupling obesity to insulin resistance in melanocortin‐3 receptor and melanocortin‐4 receptor knockout (KO) mice (Mc3/4rKO). Research Methods and Procedures: Sera and tissue were collected from 6‐month‐old Mc3rKO, Mc4rKO, and wild‐type C57BL6J litter mates maintained on low‐fat diet or exposed to high‐fat diet (HFD) for 1 or 3 months. Inflammation was assessed by both real‐time polymerase chain reaction analysis of macrophage‐specific gene expression and immunohistochemistry. Results: Mc4rKO exhibited hypoadiponectinemia, exacerbated by HFD and obesity, previously reported in murine models of obesity. Mc4r deficiency was also associated with high levels of macrophage infiltration of adipose tissue, again exacerbated by HFD. In contrast, Mc3rKO exhibited normal serum adiponectin levels, irrespective of diet or obesity, and a delayed inflammatory response to HFD relative to Mc4rKO. Discussion: Our findings suggest that severe insulin resistance of Mc4rKO fed a HFD, as reported in other models of obesity such as leptin‐deficient (Lepob/Lepob) and KK‐Ay mice, is linked to reduced serum adiponectin and high levels of inflammation in adipose tissue. Conversely, maintenance of normal serum adiponectin may be a factor in the relatively mild insulin‐resistant phenotype of severely obese Mc3rKO. Mc3rKO are, thus, a unique mouse model where obesity is not associated with reduced serum adiponectin levels. A delay in macrophage infiltration of adipose tissue of Mc3rKO during exposure to HFD may also be a factor contributing to the mild insulin resistance in this model.  相似文献   

14.
Fibrotic aortic valve disease (FAVD) is an important cause of aortic stenosis, yet currently there is no effective treatment for FAVD due to its unknown etiology. The purpose of this study was to investigate whether deficiency in the anti‐aging Klotho gene (KL) promotes high‐fat‐diet‐induced FAVD and to explore the underlying molecular mechanism. Heterozygous Klotho‐deficient (KL+/?) mice and WT littermates were fed with a high‐fat diet (HFD) or normal diet for 13 weeks, followed by treatment with the AMPKα activator (AICAR) for an additional 2 weeks. A HFD caused a greater increase in collagen levels in the aortic valves of KL+/? mice than of WT mice, indicating that Klotho deficiency promotes HFD‐induced aortic valve fibrosis (AVF). AMPKα activity (pAMPKα) was decreased, while protein expression of collagen I and RUNX2 was increased in the aortic valves of KL+/? mice fed with a HFD. Treatment with AICAR markedly attenuated HFD‐induced AVF in KL+/? mice. AICAR not only abolished the downregulation of pAMPKα but also eliminated the upregulation of collagen I and RUNX2 in the aortic valves of KL+/? mice fed with HFD. In cultured porcine aortic valve interstitial cells, Klotho‐deficient serum plus cholesterol increased RUNX2 and collagen I protein expression, which were attenuated by activation of AMPKα by AICAR. Interestingly, silencing of RUNX2 abolished the stimulatory effect of Klotho deficiency on cholesterol‐induced upregulation of matrix proteins, including collagen I and osteocalcin. In conclusion, Klotho gene deficiency promotes HFD‐induced fibrosis in aortic valves, likely through the AMPKα–RUNX2 pathway.  相似文献   

15.
Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP?/?) mice were analyzed. ClpP?/? mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole‐body energy expenditure and markers of mitochondrial biogenesis are selectively up‐regulated in the white adipose tissue (WAT) of ClpP?/? mice. When challenged with a metabolic stress such as high‐fat diet, despite similar caloric intake, ClpP?/? mice are protected from diet‐induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.  相似文献   

16.
Transgenic mice overexpressing chicken Ski (c‐Ski) have marked decrease in adipose mass with skeletal muscle hypertrophy. Recent evidence indicates a role for c‐Ski in lipogenesis and energy expenditure. In the present study, wild type (WT) and c‐Ski mice were challenged on a high‐fat (HF) diet to determine whether c‐Ski mice were resistant to diet‐induced obesity. During the HF feeding WT mice gained significantly more weight than chow‐fed animals, while c‐Ski mice were partially resistant to the effects of the HF diet on weight. Body composition analysis confirmed the decreased adipose mass in c‐Ski mice compared to WT mice. c‐Ski mice possess a similar metabolic rate and level of food consumption to WT littermates, despite lower activity levels and on chow diet show mild glucose intolerance relative to WT littermates. On HF diet, glucose tolerance surprisingly remained unchanged in c‐Ski mice, while it became worse in WT mice. Skeletal muscle of c‐Ski mice exhibit impaired insulin‐stimulated Akt phosphorylation and glucose uptake. In concordance, gene expression profiling of skeletal muscle of chow and HF‐fed mice indicated that Ski suppresses gene expression associated with insulin signaling and glucose uptake and alters gene pathways involved in myogenesis and adipogenesis. In conclusion, c‐Ski mice are partially resistant to diet‐induced obesity and display aberrant insulin signaling and glucose homeostasis which is associated with alterations in gene expression that inhibit lipogenesis and insulin signaling. These results suggest Ski plays a major role in skeletal muscle metabolism and adipogenesis and hence influences risk of obesity and diabetes.  相似文献   

17.
Pro‐aging effects of endogenous advanced glycation end‐products (AGEs) have been reported, and there is increasing interest in the pro‐inflammatory and ‐fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill‐defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML‐enriched diet on renal aging. Two‐month‐old male, wild‐type (WT) and RAGE?/? C57Bl/6 mice were fed a control or a CML‐enriched diet (200 μg CML/gfood) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE?/? mice, with a predominantly tubular localization. The CML‐rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE?/? mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A‐II (ApoA‐II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA‐II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE?/? mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE?/? mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE?/? mice, suggesting RAGE is an important receptor in so‐called inflamm‐aging.  相似文献   

18.
Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH2-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1/ mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (MKO) mice exhibit improved insulin sensitivity compared with control wild-type (MWT) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed MWT mice but is suppressed only in the liver and adipose tissue of MKO mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.Obesity is a major risk factor for the development of insulin resistance, hyperglycemia, and metabolic syndrome that can lead to β-cell dysfunction and type 2 diabetes (8). The prevalence of human obesity represents a serious health problem in the United States. It is therefore important that we obtain a detailed understanding of the molecular mechanism that accounts for obesity-induced insulin resistance. Recent progress has led to the identification of signal transduction pathways that may mediate the effects of obesity on insulin resistance (14, 23).c-Jun NH2-terminal kinase 1 (JNK1) represents one signaling pathway that has been implicated in the pathogenesis of metabolic syndrome and type 2 diabetes (21). JNK1 is activated when mice are fed a high-fat diet (HFD) (7). Moreover, Jnk1/ mice are protected against HFD-induced insulin resistance (7). The mechanism of protection is mediated, in part, by the failure of Jnk1/ mice to develop HFD-induced obesity (7). However, JNK1 can regulate insulin resistance independently of obesity. Thus, mice with an adipose tissue-specific JNK1 deficiency develop normal diet-induced obesity but exhibit selective protection against HFD-induced insulin resistance in both the liver and adipose tissue (16). These data indicate that adipose tissue JNK1 plays a critical role during the development of HFD-induced insulin resistance.The liver plays a key role in the insulin-stimulated disposal of blood glucose during the postprandial state because of reduced gluconeogenesis and increased glycogen synthesis (17). However, glucose uptake by skeletal muscle also makes a major contribution to insulin-stimulated glucose disposal (17). Muscle may therefore be an important target of obesity-induced JNK1 signaling and the regulation of glucose homeostasis.The purpose of this study was to test the role of JNK1 in muscle. Our approach was to examine the effect of a muscle-specific ablation of the Jnk1 gene in mice. We found that HFD-fed control wild-type (MWT) mice and muscle-specific JNK1-deficient (MKO) mice became similarly obese. However, MKO mice were selectively protected against HFD-induced insulin resistance. This analysis demonstrates that muscle JNK1 contributes to the effects of obesity on insulin resistance.  相似文献   

19.
Production of Annexin A1 (ANXA1), a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD)-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation.These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号