首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Oral squamous cell carcinoma (OSCC) is usually diagnosed at late stages, which leads to high morbidity. There are evidence that chronic inflammation (eg oral lichen planus [OLP]) was a risk factor of OSCC, but often misdiagnosed or ignored until invasion and metastasis. By applying precision medicine, the molecular microenvironment variations and relevant biomarkers for the malignant transformation from OLP to OSCC can be fully investigated. Several studies pointed out that the metabolic pathway were suppressed in OSCC. However, it remains unclear how the systemic profile of the metabolites change during the malignant transformation. In this study, we examined and compared the mucosa samples from 11 healthy individuals, 10 OLP patients and 21 OSCC patients. Based on the results, succinate, a key metabolite of the tricarboxylic acid cycle pathway, was accumulated in the primary cultured precancerous OLP keratinocytes and OSCC cells. Then, we found that succinate activated the hypoxia‐inducible factor‐1 alpha (HIF‐1α) pathway and induced apoptosis, which could also be up‐regulated by the tumour suppressor lncRNA MEG3. These results suggested the critical roles of succinate and MEG3 in the metabolic changes during malignant transformation from OLP to OSCC, which indicated that succinate, HIF1α and downstream proteins might serve as new biomarkers of precancerous OLP for early diagnosis and therapeutic monitoring. In addition, succinate or its prodrugs might become a potential therapy for the prevention or treatment of OSCC.  相似文献   

2.
Intravenous application of high‐dose ascorbate is used in complementary palliative medicine to treat cancer patients. Pharmacological doses of ascorbate in the mM range induce cytotoxicity in cancer cells mediated by reactive oxygen species (ROS), namely hydrogen peroxide and ascorbyl radicals. However, little is known about intrinsic or extrinsic factors modulating this ascorbate‐mediated cytotoxicity. Under normoxia and hypoxia, ascorbate IC50 values were determined on the NCI60 cancer cells. The cell cycle, the influence of cobalt chloride‐induced hypoxia‐inducible factor‐1α (HIF‐1α) and the glucose transporter 1 (GLUT‐1) expression (a pro‐survival HIF‐1α‐downstream‐target) were analysed after ascorbate exposure under normoxic and hypoxic conditions. The amount of ascorbyl radicals increased with rising serum concentrations. Hypoxia (0.1% O2) globally increased the IC50 of ascorbate in the 60 cancer cell lines from 4.5 ± 3.6 mM to 10.1 ± 5.9 mM (2.2‐fold increase, P < 0.001, Mann–Whitney t‐test), thus inducing cellular resistance towards ascorbate. This ascorbate resistance depended on HIF‐1α‐signalling, but did not correlate with cell line‐specific expression of the ascorbate transporter GLUT‐1. However, under normoxic and hypoxic conditions, ascorbate treatment at the individual IC50 reduced the expression of GLUT‐1 in the cancer cells. Our data show a ROS‐induced, HIF‐1α‐ and O2‐dependent cytotoxicity of ascorbate on 60 different cancer cells. This suggests that for clinical application, cancer patients should additionally be oxygenized to increase the cytotoxic efficacy of ascorbate.  相似文献   

3.
4.
Hypoxia‐inducible factor‐2α (HIF‐2α) plays an important role in increasing cancer progression and distant metastasis in a variety of tumour types. We aimed to investigate its biological function and clinical significance in human pancreatic ductal adenocarcinoma (PDAC). A total of 283 paired PDAC tissues and adjacent normal tissues were collected from patients who underwent surgery or biopsy at Sun Yat‐sen Memorial Hospital between February 2004 and October 2016. In this study, we noted that HIF‐2α expression was significantly up‐regulated in PDAC, positively associated with disease stage, lymph‐node metastasis and patient survival, and identified as an independent prognostic factor of PDAC patients. We demonstrated that HIF‐2α silencing could reduce proliferation, migration and invasion of PDAC cells in vitro. The similar effect on growth was demonstrated in vivo. Furthermore, we noted that knock‐down of HIF‐2α significantly decreased the expression of glutamate oxaloacetate transaminase 1 (GOT1). Importantly, we confirmed that the PI3K/mTORC2 pathway promoted GOT1 expression by targeting HIF‐2α. Our study validated HIF‐2α was an important factor in PDAC progression and poor prognosis and may promote non‐canonical glutamine metabolism via activation of PI3K/mTORC2 pathway. Targeting HIF‐2α represents a novel prognostic biomarker and therapeutic target for patients with PDAC.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is correlated with angiogenesis and early relapse of colorectal cancer (CRC). This study investigated the role of miR‐148a in the regulation of VEGF/angiogenesis and early relapse of CRC. We established a stable clone with miR‐148a expression in HCT116 and HT29 cell lines and created a hypoxic condition by using CoCl2 to determine the underlying mechanism of miR‐148a. The effects of miR‐148a on the phosphoryl‐ERK (pERK)/hypoxia‐inducible factor‐1α (HIF‐1α)/VEGF pathway were evaluated through Western blotting and the inhibitory effect of miR‐148a on angiogenesis was demonstrated through a tube formation assay. Sixty‐three CRC tissues (28 early relapse and 35 non‐early relapse) were analysed to assess the relationship between miR‐148a and HIF‐1α/VEGF. The protein expression of pERK/HIF‐1α/VEGF in HCT116 and HT29 cells was significantly decreased by miR‐148a (all P < 0.05). The protein expression of VEGF/HIF‐1α was strongly inversely associated with the expression of miR‐148a in the 63 CRC tissue samples (all P < 0.05). Tube formation assay demonstrated that miR‐148a significantly obliterated angiogenesis. miR‐148a suppresses VEGF through down‐regulation of the pERK/HIF‐1α/VEGF pathway and might lead to the inhibition of angiogenesis; miR‐148a down‐regulation increased the early relapse rate of CRC. This demonstrates that miR‐148a is a potential diagnostic and therapeutic target.  相似文献   

6.
目的:探讨针对缺氧诱导因子-1α(HIF-1α)的小干扰RNA(siRNA)对口腔鳞癌细胞(OSCC)化疗敏感性的影响。方法:用Western印迹检测OSCC和针对HIF-1α基因的siRNA导入OSCC后的HIF-1α蛋白表达水平;用MTT法检测细胞对化疗敏感性的影响;用流式细胞术检测化疗诱导细胞凋亡的凋亡率。结果:HIF-1α在OSCC中高表达,HIF-1α-siRNA转染后HIF-1α表达水平明显下降,细胞对化疗敏感性明显提高,化疗诱导肿瘤细胞凋亡率明显增加。结论:针对HIF-1α基因的siRNA能明显降低HIF-1α的表达,增强化疗对OSCC的凋亡诱导作用,有效提高OSCC对化疗的敏感性。  相似文献   

7.
Our study sought to clarify the effects of microRNA‐139‐5p (miR‐139‐5p) in the tumorigenesis and progression of oral squamous cell carcinoma (OSCC) by regulating HOXA9. MiR‐139‐5p and HOXA9 expression in OSCC tissues, tumour adjacent tissues, OSCC cells and normal cells were tested by qRT‐PCR. SAS and CAL‐27 cell lines were selected in among four OSCC cell lines and then transfected with miR‐139‐5p mimics, pEGFP‐HOXA9 and cotransfected with miR‐139‐5p mimics + pEGFP‐HOXA9. We used MTT, colony formation, transwell and wound healing assays to analyse cell viability, proliferation, invasion and migration. The target relationship between miR‐139‐5p and HOXA9 was verified by luciferase reporter assay and Western blot, respectively. MiR‐139‐5p was down‐regulated, whereas HOXA9 was up‐regulated in OSCC tissues and cells. The proliferation, invasion and migration ability of SAS and CAL‐27 cells in miR‐139‐5p mimics group were significantly weaker than those in the control group and the miR‐NC group (< 0.01). MiR‐139‐5p can negatively regulate HOXA9. The proliferation, invasion and migration of SAS and CAL‐27 cells in the miR‐139‐5p mimics + pEGFP‐HOXA9 group were not significantly different from those in the blank control and negative control groups (> 0.05). Our results indicated that miR‐139‐5p could directly inhibit HOXA9, which might be a potential mechanism in inhibiting the proliferation, invasiveness and migration of OSCC cells.  相似文献   

8.
Mounting data have shown that long non-coding RNAs (lncRNAs) widely participate in tumour initiation, development, progression and glycolysis in a variety of tumours. However, the clinical prognosis and molecular mechanisms of TMEM161B-AS1 in oesophageal squamous cell carcinoma (ESCC) remain still unknown. Here, TMEM161B-AS1 and HIF1AN were significantly lower in ESCC tissues than in normal samples, and their low expressions were both related to TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Functionally, TMEM161B-AS1 overexpression or miR-23a-3p depletion suppressed the proliferation, invasion and glycolysis as well as reduced glucose consumption and lactate production in ESCC cells. Mechanistically, TMEM161B-AS1 manipulated HIF1AN expression by competitively sponging miR-23a-3p in ESCC cells. MiR-23a-3p mimic and HIF1AN siRNA partly reversed cell phenotypes mediated by TMEM161B-AS1 in ESCC cells. Collectively, TMEM161B-AS1, miR-23a-3p and HIF1AN may be tightly involved in ESCC development and progression as well as patients’ prognosis, and TMEM161B-AS1/miR-23a-3p/HIF1AN signal axis may be a promising target for the treatment of ESCC patients.  相似文献   

9.
Paraquat (PQ) poisoning‐induced pulmonary fibrosis is one of the primary causes of death in patients with PQ poisoning. Hypoxia‐inducible factor‐1α (HIF‐1α) and epithelial‐mesenchymal transition (EMT) are involved in the progression of pulmonary fibrosis. Snail and β‐catenin are two other factors involved in promoting EMT. However, the relationship among HIF‐1α, Snail and β‐catenin in PQ poisoning‐induced pulmonary fibrosis is not clear. Our research aimed to determine whether the regulation of HIF‐1α in EMT occurs via the Snail and β‐catenin pathways in PQ poisoning‐induced pulmonary fibrosis. Sixty‐six Sprague–Dawley rats were randomly and evenly divided into a control group and a PQ group. The PQ group was treated with an intragastric infusion of a 20% PQ solution (50 mg/kg) for 2, 6, 12, 24, 48 and 72 hrs. A549 and RLE‐6TN cell lines were transfected with HIF‐1α siRNA for 48 hrs before being exposed to PQ. Western blotting, real‐time quantitative PCR, immunofluorescence, immunohistochemistry and other assays were used in our research. In vivo, the protein levels of HIF‐1α and α‐SMA were increased at 2 hrs and the level of ZO‐1 (Zonula Occluden‐1) was reduced at 12 hrs. In vitro, the transient transfection of HIF‐1α siRNA resulted in a decrease in the degree of EMT. The expression levels of Snail and β‐catenin were significantly reduced when HIF‐α was silenced. These data demonstrate that EMT may be involved in PQ poisoning‐induced pulmonary fibrosis and regulated by HIF‐1α via the Snail and β‐catenin pathways. Hypoxia‐inducible factor‐1α may be a therapeutic target for the treatment of PQ poisoning‐induced pulmonary fibrosis.  相似文献   

10.
Glycolysis is regarded as the hallmark of cancer development and progression, which involves a multistep enzymatic reaction. This study aimed to explore the clinicopathological significance and potential role of glycolytic enzyme aldolase A (ALDOA) in the carcinogenesis and progression of gastric cancer (GC). ALDOA was screened from three paired liver metastasis tissues and primary GC tissues and further explored with clinical samples and in vitro studies. The ALDOA protein level significantly correlated with a larger tumor diameter (P = .004), advanced T stage (P < .001), N stage (P < .001) and lymphovascular invasion (P = .001). Moreover, the expression of ALDOA was an independent prognostic factor for the 5‐year overall survival and disease‐free survival of patients with GC in both univariate and multivariate survival analyses (P < .05). Silencing the expression of ALDOA in GC cell lines significantly impaired cell growth, proliferation and invasion ability (P < .05). Knockdown of the expression of ALDOA reversed the epithelial–mesenchymal transition process. Mechanically, ALDOA could affect the hypoxia‐inducible factor (HIF)‐1α activity as demonstrated by the HIF‐1α response element–luciferase activity in GC cells. Collectively, this study revealed that ALDOA was a potential biomarker of GC prognosis and was important in the carcinogenesis and progression of human GC.  相似文献   

11.
12.
Cardiac microvascular endothelial cells (CMECs) are important angiogenic components and are injured rapidly after cardiac ischaemia and anoxia. Cardioprotective effects of Qiliqiangxin (QL), a traditional Chinese medicine, have been displayed recently. This study aims to investigate whether QL could protect CMECs against anoxic injury and to explore related signalling mechanisms. CMECs were successfully cultured from Sprague‐Dawley rats and exposed to anoxia for 12 hrs in the absence and presence of QL. Cell migration assay and capillary‐like tube formation assay on Matrigel were performed, and cell apoptosis was determined by TUNEL assay and caspase‐3 activity. Neuregulin‐1 (NRG‐1) siRNA and LY294002 were administrated to block NRG‐1/ErbB and PI3K/Akt signalling, respectively. As a result, anoxia inhibited cell migration, capillary‐like tube formation and angiogenesis, and increased cell apoptosis. QL significantly reversed these anoxia‐induced injuries and up‐regulated expressions of NRG‐1, phospho‐ErbB2, phospho‐ErbB4, phospho‐Akt, phospho‐mammalian target of rapamycin (mTOR), hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) in CMECs, while NRG‐1 knockdown abolished the protective effects of QL with suppressed NRG‐1, phospho‐ErbB2, phospho‐ErbB4, phospho‐Akt, phospho‐mTOR, HIF‐1α and VEGF expressions. Similarly, LY294002 interrupted the beneficial effects of QL with down‐regulated phospho‐Akt, phospho‐mTOR, HIF‐1α and VEGF expressions. However, it had no impact on NRG‐1/ErbB signalling. Our data indicated that QL could attenuate anoxia‐induced injuries in CMECs via NRG‐1/ErbB signalling which was most probably dependent on PI3K/Akt/mTOR pathway.  相似文献   

13.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

14.
The macrolide compound MFTZ‐1 has been identified as a novel topoisomerase II (Top2) inhibitor with potent in vitro and in vivo anti‐tumour activities. In this study, we further examined the effects of MFTZ‐1 on hypoxia‐inducible factor‐1α (HIF‐1α) accumulation, vascular endothelial growth factor (VEGF) secretion and angiogenesis. MFTZ‐1 reduced HIF‐1α accumulation driven by hypoxia or growth factors in human cancer cells. Mechanistic studies revealed that MFTZ‐1 did not affect the degradation of HIF‐1α protein or the level of HIF‐1α mRNA. By contrast, MFTZ‐1 apparently inhibited constitutive and inducible activation of both phosphatidylinositol‐3‐kinase (PI3K)‐Akt and p42/p44 mitogen‐activated protein kinase (MAPK) pathways. Further studies revealed that MFTZ‐1 abrogated the HIF‐1α‐driven increase in VEGF mRNA and protein secretion. MFTZ‐1 also lowered the basal level of VEGF secretion. The results reveal an important feature that MFTZ‐1 can reduce constitutive, HIF‐1α‐independent VEGF secretion and concurrently antagonize inducible, HIF‐1α‐dependent VEGF secretion. Moreover, MFTZ‐1 disrupted tube formation of human umbilical vein endothelial cells (HUVECs) stimulated by hypoxia with low‐concentration serum or by serum at normoxia, and inhibited HUVECs migration at normoxia. MFTZ‐1 also prevented microvessel outgrowth from rat aortic ring. These data reflect the potent anti‐angiogenesis of MFTZ‐1 under different conditions. Furthermore, using specific small interfering RNA targeting Top2α or Top2‐defective HL60/MX2 cells, we showed that MFTZ‐1 affected HIF‐1α accumulation and HUVECs tube formation irrelevant to its Top2 inhibition. Taken together, our data collectively reveal that MFTZ‐1 reduces constitutive and inducible HIF‐1α accumulation and VEGF secretion possibly via PI3K‐Akt and MAPK pathways, eliciting anti‐angiogenesis independently of its Top2 inhibition.  相似文献   

15.
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression.  相似文献   

16.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

17.
18.
High mobility group 1 protein (HMGB1), a highly conserved nuclear DNA‐binding protein and inflammatory mediator, has been recently found to be involved in angiogenesis. Our previous study has demonstrated the elevation of HMGB1 in the tissue of perforated disc of temporomandibular joint (TMJ). Here, we investigated a novel mediator of HMGB1 in regulating hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) to mediate angiogenesis in perforated disc cells of TMJ. HMGB1 increased the expression of HIF‐1α and VEGF in a dose‐ and time‐dependent manner in these cells. Moreover, immunofluorescence assay exhibits that the HIF‐1α were activated by HMGB1. In addition, HMGB1 activated extracellular signal‐related kinase 1/2 (Erk1/2), Jun N‐terminal kinase (JNK), but not P38 in these cells. Furthermore, both U0126 (ErK inhibitor) and SP600125 (JNK inhibitor) significantly suppressed the enhanced production of HIF‐1α and VEGF induced by HMGB1. Tube formation of human umbilical vein endothelial cells (HUVECs) was significantly increased by exposure to conditioned medium derived from HMGB1‐stimulated perforated disc cells, while attenuated with pre‐treatment of inhibitors for VEGF, HIF‐1α, Erk and JNK, individually. Therefore, abundance of HMGB1 mediates activation of HIF‐1α in disc cells via Erk and JNK pathway and then, initiates VEGF secretion, thereby leading to disc angiogenesis and accelerating degenerative change of the perforated disc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号