首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
T helper (Th) 17 cells are reportedly effector T cells that produce interleukin (IL)‐17A and play a significant role in the development of autoimmune diseases and immune responses for antimicrobial host defense. Production of IL‐17A in chronic active Epstein–Barr virus infection (CAEBV) was studied to investigate its contribution to pathogenesis of this disease. Significantly more IL‐17A‐producing cells were detected in the peripheral blood of CAEBV patients than in that of healthy controls, although a significant difference in serum IL‐17A production was not confirmed. Of the IL‐17A‐producing cells, 91.8% were cluster of differentiation (CD)4‐positive Th17 cells. Moreover, there were significantly more IL‐17A‐producing cells among CD4+ cells in peripheral blood of CAEBV patients than in that of controls (1.97 ± 0.69% vs. 1.09 ± 0.53%, P = 0.0073). These data suggest that IL‐17A‐producing cells may influence the pathophysiology of CAEBV.  相似文献   

4.
5.
Quantitative PCR is becoming widespread for diagnosing and monitoring post‐transplantation diseases associated with EBV and CMV. These assays need to be standardized to manage patients in different facilities. Five independent laboratories in Japan compared home‐brew assays and a prototype assay system to establish a standard quantitative procedure for measuring EBV and CMV. Reference standards and a total of 816 (642 EBV and 174 CMV) whole blood samples from post‐transplantation recipients were used for this multicenter evaluation. The prototype reference standard for EBV was compared to a panel of samples, with a theoretical expected value made using EBV‐positive cells containing two virus genome copies per cell. The mean ratio of the reference standard at each site to the standard of the prototype assay was ≤4.15 for EBV among three different sites and ≤3.0 for CMV between two laboratories. The mean of the theoretical expected number of the EBV genome: prototype reference was close to 1.0. The correlation coefficients between the viral copy numbers determined using the prototype assay and those using each home‐brew assay were high (EBV, 0.73–0.83, median = 0.78; CMV, 0.54–0.60, median = 0.57). The dynamics of the EBV and CMV loads in transplant recipients were similar between the assay types. There was an inter‐laboratory difference among the quantification results, indicating that a unified protocol and kit are favorable for standardizing the quantification of EBV and CMV. Such standardization will help to standardize the diagnosis and monitoring of diseases associated with EBV and CMV.  相似文献   

6.
7.
1. The rat pheochromocytoma PC12 cell line has been a commonly used model for studies of neuronal development, function, and death. Thus the abilityto transfect PC12 cells in an efficient manner and to manipulate their gene expression would enhance the usefulness of these cells.2. We demonstrate that EBV-based vectors provide a useful expression system for gene manipulation in rat PC12 cells.3. The EBV-based vectors replicate episomally in PC12 cells for at least 2months, as evidence by their recovery from the transfected cells and by the digestion of the episomal plasmid with the isoschizomer MboI and DpnI restriction enzymes.3. PC12 cells are efficiently transfected by EBV-based vectors both transiently and stably.4. Transfection of PC12 cells with an EBV-based vector containing tau cDNA in the antisense orientation resulted in a decrease in the level of tau protein in the transfected cells.5. The results demonstrate that EBV-based vectors can be a useful expression system for gene manipulation in PC12 cells.  相似文献   

8.
Nasopharyngeal carcinoma (NPC) is an Epstein‐Barr virus (EBV)‐associated epithelial malignancy. The high expression of BART‐miRNAs (miR‐BARTs) during latent EBV infection in NPC strongly supports their pathological importance in cancer progression. Recently, we found that several BART‐miRNAs work co‐operatively to modulate the DNA damage response (DDR) by reducing Ataxia‐telangiectasia‐mutated (ATM) activity. In this study, we further investigated the role of miR‐BARTs on DDR. The immunohistochemical study showed that the DNA repair gene, BRCA1, is consistently down‐regulated in primary NPCs. Using computer prediction programs and a series of reporter assays, we subsequently identified the negative regulatory role of BART2‐3p, BART12, BART17‐5p and BART19‐3p in BRCA1 expression. The ectopic expression of these four miR‐BARTs suppressed endogenous BRCA1 expression in EBV‐negative epithelial cell lines, whereas BRCA1 expression was enhanced by repressing endogenous miR‐BARTs activities in C666‐1 cells. More importantly, suppressing BRCA1 expression in nasopharyngeal epithelial cell lines using miR‐BART17‐5p and miR‐BART19‐3p mimics reduced the DNA repair capability and increased the cell sensitivity to the DNA‐damaging chemotherapeutic drugs, cisplatin and doxorubicin. Our findings suggest that miR‐BARTs play a novel role in DDR and may facilitate the development of effective NPC therapies.  相似文献   

9.
The Epstein‐Barr gammaherpesvirus (EBV) is the first oncogenic virus discovered in human. Indeed, EBV has been known for more than 50 years to be tightly associated with certain human cancers. As such, EBV has been the subject of extensive studies aiming at deciphering various aspects of its biological cycle, ranging from the regulation of its genome replication and maintenance to the induction of its lytic cycle, including the mechanisms that allow its immune evasion or that are related to its tumorogenicity. For more than 30 years the budding yeast Saccharomyces cerevisiae has fruitfully contributed to a number of these studies. The aim of this article is to review the various aspects of EBV biology for which yeast has been instrumental, and to propose new possible applications for these yeast‐based assays, as well as the creation of further yeast models dedicated to EBV. This review article illustrates the tremendous potential of S. cerevisiae in integrated chemobiological approaches for the biomedical research.  相似文献   

10.
Epstein–Barr virus (EBV) is the causative agent of mononucleosis and is also associated with several malignancies, including Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, among others. EBV reactivates during spaceflight, with EBV shedding in saliva increasing to levels ten times those observed pre‐and post‐flight. Although stress has been shown to increase reactivation of EBV, other factors such as radiation and microgravity have been hypothesized to contribute to reactivation in space. We used a modeled spaceflight environment to evaluate the influence of radiation and microgravity on EBV reactivation. BJAB (EBV‐negative) and Raji (EBV‐positive) cell lines were assessed for viability/apoptosis, viral antigen and reactive oxygen species expression, and DNA damage and repair. EBV‐infected cells did not experience decreased viability and increased apoptosis due to modeled spaceflight, whereas an EBV‐negative cell line did, suggesting that EBV infection provided protection against apoptosis and cell death. Radiation was the major contributor to EBV ZEBRA upregulation. Combining modeled microgravity and radiation increased DNA damage and reactive oxygen species while modeled microgravity alone decreased DNA repair in Raji cells. Additionally, EBV‐infected cells had increased DNA damage compared to EBV‐negative cells. Since EBV‐infected cells do not undergo apoptosis as readily as uninfected cells, it is possible that virus‐infected cells in EBV seropositive individuals may have an increased risk to accumulate DNA damage during spaceflight. More studies are warranted to investigate this possibility. J. Cell. Biochem. 114: 616–624, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Novel nude mice model of human NK/T cell lymphoma were established by subcutaneously injecting two NK/T cell lymphoma cell lines into the right axillary region of mice and successful passages were completed by injecting cell suspension which was obtained through a 70‐μm cell strainer. These mice models and corresponding cell clones have been successfully developed for more than 8 generations. The survival rates of both resuscitation and transplantation in NKYS and YT models were 90% and 70% correspondingly. Pathologically, the tumour cells in all passages of the lymphoma‐bearing mice and cell lines obtained from tumours were parallel to initial cell lines. Immunologically, the tumour cells expressed the characteristics of the primary and essential NK/T lymphomas. The novel mice models maintained the essential features of human NK/T cell lymphoma, and they would be ideal tools in vivo for further research of human NK/T cell lymphoma.  相似文献   

12.
Viruses and other microorganisms express specific pathogen‐associated molecular patterns that are recognized by cell surface or endosome‐associated Toll‐like receptors (TLR). There are many examples of viruses that have developed strategies to modulate TLR signaling through the use of viral or cellular molecules. Epstein–Barr virus (EBV) has recently been found to display a complex interaction with TLR. The aim of this study was to asses the effect of EBV infection on proliferative capacity of TLR7/8 and 9 agonist and CD40 ligand (CD40L) in normal B lymphocytes. Our results demonstrate that EBV induces a significant inhibition in proliferative response to TLR7/8 (P < 0.004) and TLR9 (P < 0.000) agonists but not to CD40L stimulation in enriched human normal B lymphocytes. Similar inhibitory effect was also observed in B lymphocytes prestimulated with the TLR agonists, implying that the suppressive effect is not due to downregulation of TLR protein expression by EBV. EBV infection did not induce apoptosis and did not downregulate TLR7/8 mRNA expression in B lymphocytes. Our results suggest that EBV might be able to evade the immune system by modulation of the TLR signaling pathway.  相似文献   

13.
14.
15.
Epstein-Barr virus (EBV) infection in tumor cells is generally restricted to the latent forms of viral infection. Switching the latent form of viral infection into the lytic form may induce tumor cell death. An important nuclear factor, nuclear factor (NF)-kappaB, is thought to play an essential role in EBV lytic infection; high levels of NF-kappaB can inhibit EBV lytic replication. In this study, we tested the effect of inducing EBV lytic replication using two NF-kappaB inhibitors: Bay11-7082 and Z-LLF-CHO, to reveal the possibility of targeting EBV-positive cancer therapy with these two NF-kappaB inhibitors. Our results showed that Bay11-7082 and Z-LLF-CHO reactivated EBV in a dose-dependent manner, thus resulting in EBV-positive 5-8F cell death. In contrast, there was no significant effect on EBV-negative HNE3 cells. When ganciclovir was used in combination with either Bay11-7082 or Z-LLF-CHO to treat 5-8F cells, the cytotoxic effect of the NF-kappaB inhibitor was amplified. The finding indicates that inhibiting the NF-kappaB activity of EBV-positive cells can induce lytic replication of EBV and cause lytic cytotoxicity against these cells.  相似文献   

16.
Gastric and esophageal cancers are as main cancers of the gastrointestinal (GI) tract, which are associated with poor diagnosis and survival. Several efforts were made in the past few decades to finding effective therapeutic approaches, but these approaches had several problems. Finding new biomarkers is a critical step in finding new approaches for the treatment of these cancers. Finding new biomarkers that cover various aspects of the diseases could provide a choice of suitable therapies and better monitoring of patients with these cancers. Among several biomarkers tissue specific and circulating microRNAs (miRNAs) have emerged as powerful candidates in the diagnosis of gastric and esophageal cancers. MiRNAs are small noncoding single‐stranded RNA molecules that are found in the blood and regulate gene expression. These have numerous characteristics that make them suitable for being used as ideal biomarkers in cancer diagnosis. Research has indicated that the level and profile of miRNA in serum and plasma are very high. They are potentially noninvasive and sensitive enough to detect tumors in their primary stages of infection. Multiple lines of evidence indicate that the presence, absence, or deregulation of several circulating miRNAs (i.e., let‐7a, miR‐21, miR‐93, miR‐192a, miR‐18a, and miR‐10b for gastric cancer, and miR‐21, miR‐375, miR‐25‐3p, miR‐151a‐3p, and miR‐100‐3p for esophageal cancer) are associated with initiation and progression of gastric and esophageal cancers. The aim of this review is to highlight the recent advances in the roles of miRNAs in diagnosis and treatment of gastric and esophageal cancers.  相似文献   

17.
Toll‐like receptor‐3 (TLR3) and RNA helicase retinoic‐acid‐inducible protein‐1 (RIG‐I) serve as cytoplasmic sensors for viral RNA components. In this study, we investigated how the TLR3 and RIG‐I signalling pathway was stimulated by viral infection to produce interleukin (IL)‐32‐mediated pro‐inflammatory cytokines and type I interferon in the corneal epithelium using Epstein–Barr virus (EBV)‐infected human cornea epithelial cells (HCECs/EBV) as a model of viral keratitis. Increased TLR3 and RIG‐I that are responded to EBV‐encoded RNA 1 and 2 (EBER1 and EBER2) induced the secretion of IL‐32‐mediated pro‐inflammatory cytokines and IFN‐β through up‐regulation of TRIF/TRAF family proteins or RIP‐1. TRIF silencing or TLR3 inhibitors more efficiently inhibited sequential phosphorylation of TAK1, TBK1, NF‐κB and IRFs to produce pro‐inflammatory cytokines and IFN‐β than RIG‐I‐siRNA transfection in HCECs/EBV. Blockade of RIP‐1, which connects the TLR3 and RIG‐I pathways, significantly blocked the TLR3/TRIF‐mediated and RIG‐I‐mediated pro‐inflammatory cytokines and IFN‐β production in HCECs/EBV. These findings demonstrate that TLR3/TRIF‐dependent signalling pathway against viral RNA might be a main target to control inflammation and anti‐viral responses in the ocular surface.  相似文献   

18.
19.
Epstein-Barr virus (EBV) causes EBV-associated lymphoproliferative diseases in patients with profound immune suppression. Most of these diseases are life-threatening and the prognosis of AIDS-associated lymphomas is extremely unfavorable. Polyclonal expansion of virus infected B-cell predisposes them to transformation. We investigated the possibility of nuclear factor kappa B (NF-kappaB) inhibition by dehydroxymethylepoxyquinomicin (DHMEQ) for the treatment and prevention of EBV-associated lymphoproliferative diseases. We examined the effect of DHMEQ on apoptosis induction in four EBV-transformed lymphoblastoid cell lines as well as peripheral blood mononuclear cells infected with EBV under immunosuppressed condition. DHMEQ inhibits NF-kappaB activation in EBV-transformed lymphoblastoid cell lines and induces apoptosis by activation of mitochondrial and membranous pathways. Using an in vivo NOD/SCIDgammac mouse model, we showed that DHMEQ has a potent inhibitory effect on the growth of lymphoblastoid cells. In addition, DHMEQ selectively purges EBV-infected cells expressing latent membrane protein (LMP) 1 from peripheral blood mononuclear cells and inhibits the outgrowth of lymphoblastoid cells. These results suggest that NF-kappaB is a molecular target for the treatment and prevention of EBV-associated lymphoproliferative diseases. As a potent NF-kappaB inhibitor, DHMEQ is a potential compound for applying this strategy in clinical medicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号