首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Temozolomide (TMZ) is a widely used chemotherapeutic agent for malignant glioma. β-Elemene has been reported to have the ability of passing through the blood-brain barrier and reverse multidrug resistance. In the present study, transport of drugs through the in vitro blood-brain barrier (BBB) model also suggested that β-elemene can assist in TMZ transport to the brain. Plasma and brain pharmacokinetics demonstrated that when β-elemene is used in combination with TMZ, the metabolic rate of TMZ in plasma is slowed, and mean residence time (MRT) in brain is prolonged. The brain tissue distribution at 1 h indicated that the combination of TMZ and β-elemene promotes the distribution of β-elemene in the brain but slightly reduces the distribution of TMZ in the brain. Furthermore the antitumor effect and toxicity in vivo were also investigated. The combination of β-elemene and TMZ was well tolerated and significantly inhibited tumor growth in glioma xenografts. In summary, the present study indicates a synergistic antitumor effect of β-elemene and TMZ in glioma.  相似文献   

3.
Temozolomide (TMZ) is the internationally recognized and preferred drug for glioma chemotherapy treatment. However, TMZ resistance in glioma appears after long-term use and is an urgent problem that needs to be solved. Circular RNAs (circRNAs) are noncoding RNAs and play an important role in the pathogenesis and progression of tumors. Hsa_circ_0110757 was identified in TMZ-resistant glioma cells by high-throughput sequencing analysis and was derived from reverse splicing of myeloid cell leukemia-1 (Mcl-1) exons. The role of hsa_circ_0110757 in TMZ-resistant glioma was evaluated both in vitro and in vivo. It was found that hsa_circ_0110757 and ITGA1 are more highly expressed in TMZ-resistant glioma than in TMZ-sensitive glioma. The overexpression of hsa_circ_0110757 in glioma patients treated with TMZ was obviously associated with tumor invasion. This study indicates that hsa_circ_0110757 inhibits glioma cell apoptosis by sponging hsa-miR-1298-5p to promote ITGA1 expression. Thus, hsa_circ_0110757/hsa-miR-1298-5p/ITGA could be a potential therapeutic target for reversing the resistance of glioma to TMZ.Subject terms: Chemotherapy, Tumour-suppressor proteins  相似文献   

4.
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR‐3116 in the TMZ resistance. miR‐3116 and FGFR1 mRNA were quantified by real‐time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR‐3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR‐3116 dipped in samples resistant to TMZ, while increased miR‐3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR‐3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR‐3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR‐3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.  相似文献   

5.
Previous studies showed that the chemotherapeutic effect of temozolomide (TMZ) and vincristine (VCR) against glioma might be blunted by the co-culture with astrocytes, and connexin-43 (CX43) was thought to play a vital role in the communication between glioma cells and astrocytes. In this study, we aimed to investigate the combined chemotherapeutic effect of AS602801 and TMZ/ VCR in glioma cells both. Dye transfer assay was used to evaluate the gap junction activity between U251 cells and astrocytes. Western blot and immunohistochemistry were carried out to analyse the expression of p-JNK, CX43 and CASP-3 proteins treated under different conditions. AS602801 significantly suppressed the gap junction activity between U251 cells and astrocytes. The expression of p-JNK and CX43 was remarkably inhibited by AS602801. TMZ/VCR-induced apoptosis of glioma cells was effectively enhanced by AS602801 treatment. Accordingly, the inhibitory role of TMZ/VCR in the expression of p-JNK, CX43 and CASP-3 in glioma cells was notably restored by AS602801. Furthermore, in a glioma cell xenograft, AS602801 showed an apparent capability to enhance TMZ/VCR-induced tumour cell apoptosis through altering the expression of p-JNK, CX43 and CASP-3. The findings of this study demonstrated that the co-culture of glioma cells with astrocytes blunted the tumour killing effect of TMZ and VCR. AS602801 down-regulated CX43 expression by inhibiting JNK. And AS602801 also sensitized glioma cells to TMZ/VCR by blocking the gap junction communication between glioma cells and astrocytes via down-regulating CX43, indicating its potential role as a novel adjuvant chemotherapeutic agent in the treatment of glioma.  相似文献   

6.
Glioblastoma (GB), the most aggressive brain tumour, and mantle cell lymphoma (MCL), a rare but very aggressive type of lymphoma, are highly resistant to chemotherapy. GB and MCL chemotherapy gives very modest results, the vast majority of patients experience recurrent disease. To find out the new treatment modality for drug-resistant GB and MCL cells, combining of bradykinin (BK) antagonists with conventional temozolomide (TMZ) treatment, and screening of thiazolidinones derivatives were the main objectives of this work. As it was revealed here, BKM-570 was the lead compound among BK antagonists under investigation (IC50 was 3.3 μM) in human GB cells. It strongly suppressed extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation. BK antagonists did not decrease the viability of MCL cells, thus showing the cell-specific mode, while thiazolidinone derivatives, a novel group of promising anti-tumour compounds inhibited proliferation of MCL cells: IC50 of ID 4526 and ID 4527 compounds were 0.27 μM and 0.16 μM, correspondingly. However, single agents are often not effective in clinic due to activation of collateral pathways in tumour cells. We demonstrated a strong synergistic effect after combinatorial treatment by BKM-570 together with TMZ that drastically increased cytotoxic action of this drug in rat and human glioma cells. Small proportion of cells was still viable after such treatment that could be explained by presence of TMZ-resistant cells in the population.It is possible to expect that the combined therapy aimed simultaneously at different elements of tumourigenesis will be more effective with lower drug concentrations than the first-line drug temozolomide used alone in clinics.  相似文献   

7.
In adults, glioma is the most commonly occurring and invasive brain tumour. For malignant gliomas, the current advanced chemotherapy includes TMZ (temozolomide). However, a sizeable number of gliomas are unyielding to TMZ, hence, giving rise to an urgent need for more efficient treatment choices. Here, we report that cyclin‐dependent kinases 4 (CDK4) is expressed at significantly high levels in glioma cell lines and tissues. CDK4 overexpression enhances colony formation and proliferation of glioma cells and extends resistance to inhibition of TMZ‐mediated cell proliferation and induction of apoptosis. However, CDK4 knockdown impedes colony formation and cell proliferation, and enhances sensitivity of glioma cells to TMZ. The selective inhibition of CDK4/6 impedes glioma cell proliferation and induces apoptotic induction. The selective inhibitors of CDK4/6 may enhance glioma cell sensitivity to TMZ. We further showed the possible role of RB phosphorylation mediated by CDK4 for its oncogenic function in glioma. The growth of glioma xenografts was inhibited in vivo, through combination treatment, and corresponded to enhanced p‐RB levels, reduced staining of Ki‐67 and enhanced activation of caspase 3. Therefore, CDK4 inhibition may be a favourable strategy for glioma treatment and overcomes TMZ resistance.  相似文献   

8.

Background

Glioblastoma multiforme (GBM), the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ) is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ.

Methodology/Principal Findings

Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ.

Conclusions/Significance

These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.  相似文献   

9.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

10.
Circular RNAs play an important role in the development of various malignancies, including hepatocellular carcinoma (HCC). Nevertheless, the role of Hsa_circ_0093335 (circ0093335) in HCC has not yet been explored. To investigate the biological effects and molecular mechanisms of circ0093335 on HCC. Circ0093335 expression was detected in HCC cells and clinical specimens using qRT-PCR. The association between circ0093335 expression and HCC patients' clinical characteristics was determined using SPSS. The role of circ0093335 in HCC was estimated by overexpression and knockdown experiments in vitro and in vivo. qRT-PCR, nucleoplasma separation assay, FISH assay, RIP, dual luciferase reporter assay and rescue assay were used to validate the regulatory effect of circ0093335 on miR-338-5p. The study findings showed that circ0093335 was upregulated in HCC. High circ0093335 expression was linked with the tumour-node-metastasis stage and microvascular tumour invasion. circ0093335 is greatly involved in HCC cell proliferation, aggressive ability and mouse tumour growth, according to many in vitro and in vivo tests. Mechanistically, circ0093335 downregulated miR-338-5p expression by sponging, consequently promoting HCC progression. Our research indicated that circ0093335 might be a target for HCC therapy since it promotes tumour progression by acting as a miR-338-5p ‘sponge’.  相似文献   

11.
Temozolomide (TMZ), a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT), a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL), which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance.  相似文献   

12.
Microenvironmental hypoxia-mediated drug resistance is responsible for the failure of cancer therapy. To date, the role of the hedgehog pathway in resistance to temozolomide (TMZ) under hypoxia has not been investigated. In this study, we discovered that the increasing hypoxia-inducible factor 1α (HIF-1α) activated the hedgehog pathway in hypoxic microenvironment by promoting autocrine secretion of sonic hedgehog protein (Shh), and then upregulating transfer of Gli1 to the nucleus, finally contributed to TMZ resistance in glioma cells. Oroxylin A (C16H12O5), a bioactive flavonoid, could induce HIF-1α degradation via prolyl-hydroxylases–VHL signaling pathway, resulting in the inactivation of the hedgehog. Besides, oroxylin A increased the expression of Sufu, which is a negative regulator of Gli1. By this mechanism, oroxylin A sensitized TMZ on glioma cells. U251 intracranial transplantation model and GL261 xenograft model were used to confirm the reversal effects of oroxylin A in vivo. In conclusion, our results demonstrated that HIF-1α/hedgehog pathway conferred TMZ resistance under hypoxia, and oroxylin A was capable of increasing the sensitivity of TMZ on glioma cells in vitro and in vivo by inhibiting HIF-1α/hedgehog pathway and depressing the activation of Gli1 directly.  相似文献   

13.
14.
Nearly all melanoma patients with a BRAF‐activating mutation will develop resistance after an initial clinical benefit from BRAF inhibition (BRAFi). The aim of this work is to evaluate whether metabolic imaging using hyperpolarized (HP) 13C pyruvate can serve as a metabolic marker of early response to BRAFi in melanoma, by exploiting the metabolic effects of BRAFi. Mice bearing human melanoma xenografts were treated with the BRAFi vemurafenib or vehicle. In vivo HP 13C magnetic resonance spectroscopy was performed at baseline and 24 hours after treatment to evaluate changes in pyruvate‐to‐lactate conversion. Oxygen partial pressure was measured via electron paramagnetic resonance oximetry. Ex vivo qRT‐PCR, immunohistochemistry and WB analysis were performed on tumour samples collected at the same time‐points selected for in vivo experiments. Similar approaches were applied to evaluate the effect of BRAFi on sensitive and resistant melanoma cells in vitro, excluding the role of tumour microenvironment. BRAF inhibition induced a significant increase in the HP pyruvate‐to‐lactate conversion in vivo, followed by a reduction of hypoxia. Conversely, the conversion was inhibited in vitro, which was consistent with BRAFi‐mediated impairment of glycolysis. The paradoxical increase of pyruvate‐to‐lactate conversion in vivo suggests that such conversion is highly influenced by the tumour microenvironment.  相似文献   

15.
Although the treatments of malignant glioma include surgery, radiotherapy and chemotherapy by oral drug administration, the prognosis of patients with glioma remains very poor. We developed a polyethylene glycol-dipalmitoylphosphatidyle- thanoiamine (mPEG-DPPE) calcium phosphate nanoparticles (NPs) injectable thermoresponsive hydrogel (nanocomposite gel) that could provide a sustained and local delivery of paclitaxel (PTX) and temozolomide (TMZ). In addition, the proportion of PTX and TMZ for the optimal synergistic antiglioma effect on C6 cells was determined to be 1:100 (w/w) by the Chou and Talalay method. Our results clearly indicated that the autophagy induced by PTX:TMZ NPs plays an important role in regulating tumor cell death, while autophagy inhibition dramatically reverses the antitumor effect of PTX:TMZ NPs, suggesting that antiproliferative autophagy occurs in response to PTX:TMZ NPs treatment. The antitumor efficacy of the PTX:TMZ NP-loaded gel was evaluated in situ using C6 tumor-bearing rats, and the PTX:TMZ NP-loaded gel exhibited superior antitumor performance. The antitumor effects of the nanocomposite gel in vivo were shown to correlate with autophagic cell death in this study. The in vivo results further confirmed the advantages of such a strategy. The present study may provide evidence supporting the development of nanomedicine for potential clinical application.  相似文献   

16.
Glioblastoma multiforme (GBM), a fatal brain tumour with no available targeted therapies, has a poor prognosis. At present, radiotherapy is one of the main methods to treat glioma, but it leads to an obvious increase in inflammatory factors in the tumour microenvironment, especially IL-6 and CXCL1, which plays a role in tumour to resistance radiotherapy and tumorigenesis. Casein kinase 1 alpha 1 (CK1α) (encoded on chromosome 5q by Csnk1a1) is considered an attractive target for Tp53 wild-type acute myeloid leukaemia (AML) treatment. In this study, we evaluated the anti-tumour effect of Csnk1a1 suppression in GBM cells in vitro and in vivo. We found that down-regulation of Csnk1a1 or inhibition by D4476, a Csnk1a1 inhibitor, reduced GBM cell proliferation efficiently in both Tp53 wild-type and Tp53-mutant GBM cells. On the contrary, overexpression of Csnk1a1 promoted cell proliferation and colony formation. Csnk1a1 inhibition improved the sensitivity to radiotherapy. Furthermore, down-regulation of Csnk1a1 reduced the production and secretion of pro-inflammatory factors. In the preclinical GBM model, treatment with D4476 significantly inhibited the increase in pro-inflammatory factors caused by radiotherapy and improved radiotherapy sensitivity, thus inhibiting tumour growth and prolonging animal survival time. These results suggest targeting Csnk1a1 exert an anti-tumour role as an inhibitor of inflammatory factors, providing a new strategy for the treatment of glioma.  相似文献   

17.
Overcoming temozolomide (TMZ) resistance in glioma cancer cells remains a major challenge to the effective treatment of the disease. Increasing TMZ efficacy for patients with glioblastoma (GBM) is urgently needed because TMZ treatment is the standard chemotherapy protocol for adult patients with glioblastoma. O6-methylguanine-DNA-methyltransferase (MGMT) overexpression is associated with TMZ resistance, and low MGMT is a positive response marker for TMZ therapy. Here, we used 3 glioma cell lines (SF767, U373, and LN229), which had different levels of TMZ sensitivity. We found TMZ sensitivity is positively correlated with MGMT expression and multidrug-resistance protein ABC subfamily G member 2 (ABCG2) in these cells. CK2-STAT3 signaling and Hippo-YAP signaling are reported to regulate MGMT expression and ABCG2 expression, respectively. We combined CK2 inhibitor CX-4945 and YAP inhibitor verteporfin with TMZ treatment. We found that CX-4945 but not verteporfin can sensitize TMZ-resistant cells SF767 to TMZ and that CX-4945 and TMZ combinational treatment was effective for glioma treatment in mouse models compared with TMZ alone.ImplicationsA combination of CK2 inhibitor with TMZ may improve the therapeutic efficiency of TMZ toward GBM with acquired resistance.  相似文献   

18.

Background

The DNA alkylating agent temozolomide (TMZ) is widely used in the treatment of human malignancies such as glioma and melanoma. On the basis of previous structure-activity studies, we recently synthesized a new TMZ selenium analog by rationally introducing an N-ethylselenocyanate extension to the amide functionality in TMZ structure.

Principal Findings

This TMZ-Se analog showed a superior cytotoxicity to TMZ in human glioma and melanoma cells and a more potent tumor-inhibiting activity than TMZ in mouse glioma and melanoma xenograft model. TMZ-Se was also effective against a TMZ-resistant glioma cell line. To explore the mechanism underlying the superior antitumor activity of TMZ-Se, we compared the effects of TMZ and TMZ-Se on apoptosis and autophagy. Apoptosis was significantly increased in tumor cells treated with TMZ-Se in comparison to those treated with TMZ. TMZ-Se also triggered greater autophagic response, as compared with TMZ, and suppressing autophagy partly rescued cell death induced by TMZ-Se, indicating that TMZ-Se-triggered autophagy contributed to cell death. Although mRNA level of the key autophagy gene, Beclin 1, was increased, Beclin 1 protein was down-regulated in the cells treated with TMZ-Se. The decrease in Beclin 1 following TMZ-Se treatment were rescued by the calpain inhibitors and the calpain-mediated degradation of Beclin1 had no effect on autophagy but promoted apoptosis in cells treated with TMZ-Se.

Conclusions

Our study indicates that incorporation of Se into TMZ can render greater potency to this chemotherapeutic drug.  相似文献   

19.
The alkylating agent temozolomide (TMZ) is the major chemotherapeutic drug used clinically in the treatment of malignant gliomas. This study investigated the mechanism behind TMZ-induced cell death and the possibility that resveratrol might increase TMZ efficacy. TMZ induced both apoptotic cell death and cytoprotective autophagy through a reactive oxygen species (ROS) burst and extracellular signal-regulated kinase (ERK) activation, which was suppressed by resveratrol, resulting in a decrease in autophagy and an increase in apoptosis, suggesting that the ROS/ERK pathway plays a crucial role in the fate of cells after TMZ treatment. Isobolographic analysis indicated that the combination of TMZ and resveratrol has a synergistic effect. Moreover, an in vivo mouse xenograft study also showed that coadministration of resveratrol and TMZ reduced tumor volumes by suppressing ROS/ERK-mediated autophagy and subsequently inducing apoptosis. Taken together, our data indicate that TMZ-induced ROS/ERK-mediated autophagy protected glioma cells from apoptosis, and the combination of resveratrol with TMZ could improve the efficacy of chemotherapy for brain tumors.  相似文献   

20.
Background: Drug resistance is one of the biggest challenges in cancer therapy. temozolomide (TMZ) represents the most important chemotherapeutic option for glioma treatment. However, the therapeutic efficacy of TMZ remains very limited due to its frequent resistance in glioma, and the underlying mechanisms were not fully addressed. Herein, we demonstrate that the elevated expression of CD147 contributes to TMZ resistance in glioma cells, potentially through the post-translational regulation of Nrf2 expression.Methods: Cell-based assays of CD147 triggered drug resistance were performed through Edu-incorporation assay, CCK8 assay, TUNEL staining assay and flow cytometric assay. Luciferase reporter assay, protein stability related assays, co-immunoprecipitation assay were used to determine CD147 induction of Nrf2 expression through β-TrCP dependent ubiquitin system. Finally, the effect of the CD147/Nrf2 signaling on glioma progression and TMZ resistance were evaluated by functional experiments and clinical samples.Results: Based on the analysis of clinical glioma tissues, CD147 is highly expressed in glioma tissues and positively associated with tumor malignancy. Suppression of CD147 expression increased the inhibitory effect of TMZ on cell survival in both U251 and T98G cells, whereas the gain of CD147 function blocked TMZ-induced ROS production and cell death. Mechanistic study indicates that CD147 inhibited GSK3β/β-TrCP-dependent Nrf2 degradation by promoting Akt activation, and subsequently increased Nrf2-mediated anti-oxidant gene expressions. Supporting the biological significance, the reciprocal relationship between CD147 and Nrf2 was observed in glioma tissues, and associated with patient outcome.Conclusions: Our data provide the first evidence that glioma resistance to TMZ is potentially due to the activation of CD147/Nrf2 axis. CD147 promotes Nrf2 stability through the suppression of GSK3β/β-TrCP dependent Nrf2 protein degradation, which results in the ablation of TMZ induced ROS production. As such, we point out that targeting CD147/Nrf2 axis may provide a new strategy for the treatment of TMZ resistant gliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号