首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of changes in nutritional and health status upon bone and enamel development are examined in a sample of 63 rural Guatemalan children (24 females, 39 males). The number of ossified hand-wrist centers at 3 years and the number of linear enamel hypoplasias (LEH) in ~0–3 year zones of developing teeth were used to monitor the response of bone mineralization and enamel matrix formation to illness and nutritional supplementation. Numbers of ossified centers and LEH were compared across sex, supplementation, and morbidity groups. Enamel matrix secretion responded positively to increased supplementation. Children who received less than 34.25 kcal/day in supplement had more LEH than those who received more supplement. No differences in ossification status were found between supplementation groups. These data suggest that enamel formation may be more sensitive to changes in nutritional status than is bone mineralization. Disruptions of bone and enamel formation were both associated with frequent illness. Children who were ill more than 3.6% of the time had more LEH and fewer ossified hand-wrist centers than children who were less frequently ill. Conclusions regarding relative environmental sensitivity must take into account the specific aspects of dental and skeletal development examined. © 1993 Wiley-Liss, Inc.  相似文献   

2.
3.
Objective: This study assessed the long‐term effects of group behavioral treatment plus individual cognitive behavioral therapy (CBT) and/or fluoxetine in binge eating disorder (BED) patients. Research Methods and Procedures: A total of 116 individuals were randomized to an initial five‐month trial and were followed up over two years. Assessments, including binge frequency, weight, and self‐report measures, were administered at pre‐treatment, post‐treatment, and ~6, 12, 18, and 24 months after initial treatment. Results: Across treatment groups, there was overall improvement over 29 months in binge frequency and in binge abstinence. The odds of binge abstinence 2 years post‐treatment were 1.373 times the odds of binge abstinence immediately post‐treatment. There was no significant change in weight over the two‐year period. Subjects who received individual CBT evidenced lower binge frequency over the two‐year follow‐up period than patients who had not received individual CBT. Similarly, CBT was associated with increased rates of binge abstinence. There were no main effects of treatment assignment on weight over the two‐year follow‐up period. There was a significant advantage for fluoxetine assignment over the two‐year follow‐up period on depressive symptoms. Discussion: The major significance of the study rests in its examination of the long‐term effects of standardized interventions for BED. Our findings provide support for the ideas that short‐term treatment may confer long‐term benefit and that not all treatments are equivalent in the benefits they confer.  相似文献   

4.
The effects of thyro-parathyroidectomy, parathyroidectomy or thyroidectomy upon enamel formation in the rat incisor were studied. One control group and four groups of surgically treated rats were used: parathyroid autotransplanted, thyroidectomized, parathyroidectomized, and thyro-parathyroidectomized. One month after surgery, the incisors were processed for light and electron microscopy. The present study revealed perturbations of the Tomes' process morphology, of the rod pattern in the inner enamel formation, of the enamel surface, and of the mineralization after thyro-parathyroidectomy. After parathyroidectomy, only mineralization defects could be visualised. No effects were observed in enamel after thyroidectomy. A severe hypocalcemic state as seen in thyro-parathyroidectomized rats affects the enamel shape, and mineralization, and the morphology and function of secretory ameloblasts. Knowledge of the way in which the alteration of the enamel surface is produced should contribute to a better understanding of the development of tooth enamel.  相似文献   

5.
The interruption of vascular development could cause structural and functional abnormalities in tissues. We have previously reported that short‐term treatment of newborn mice with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors induces abnormal retinal vascular growth and patterns. An exposure of neonatal mice to high‐concentration oxygen disturbs normal retinal vascular development. The present study aimed to determine (1) whether vascular abnormalities are observed in the retina of newborn mice exposed to high concentrations of oxygen, and (2) how astrocyte network formation is affected following the exposure to hyperoxia. Newborn (postnatal day 0) mice were exposed to 75% oxygen for 48 or 96 hr. During hyperoxia exposure, VEGF expression decreased, and the onset of retinal vascularization was completely suppressed. After completion of the hyperoxic period, retinal vascularization occurred, but it was delayed in a hyperoxic exposure duration‐dependent manner. In retinas of hyperoxia‐exposed mice, dense capillary plexuses were found, and the number of arteries and veins decreased. The astrocyte network formation was slightly delayed under hyperoxic conditions, and the network became denser in retinas of mice with an episode of hyperoxia. Expression of VEGF levels in the avascular retina of mice that were exposed to hyperoxia was higher than that of control mice. These results suggest that short‐term interruption of the onset of vascular development resulting from the reduction in VEGF signals induces abnormal vascular patterns in the mouse retina. The abnormalities in retinal astrocyte behavior might contribute to the formation of an abnormal retinal vascular growth.  相似文献   

6.
1. Eel were exposed to a sublethal concentration of lindane (0.335 ppm) for 6, 12, 24, 48, 72 and 96 hr. 2. Concentrations of glycogen, glucose, lactate, pyruvate and lipids were determined in gill tissue after lindane exposure. 3. Gill glycogen decreased and glucose levels increased at 6 hr of treatment, lactate and pyruvate concentration increased between 6 and 48 hr. Total lipid values decreased between 6 and 24 hr; thereafter, the levels increased up to 72 hr of exposure. 4. Clear changes were found in all parameters tested in gill tissues. The observed effects of lindane on metabolism in fish are discussed in relation to acute stress syndrome.  相似文献   

7.
Repetitive exposure of neonates to noxious events is inherent to their health status monitoring in neonatal intensive care units (NICU). Altered basal nociception in the absence of an injury in later life has been demonstrated in ex‐NICU children, but the impact on pain hypersensitivity following an injury in later life is unknown. Also, underlying mechanisms for such long‐term changes are relatively unknown. The objective of this study is to investigate acute and long‐term effects of neonatal repetitive painful skin‐breaking procedures on nociception and to investigate plasticity of the nociceptive circuit. The repetitive needle prick animal model was used in which neonatal rats received four needle pricks into the left hind paw per day during the first postnatal week and control animals received nonpainful tactile stimuli. Repetitive needle pricking during the first week of life induced acute hypersensitivity to mechanical stimuli. At the age of 8 weeks, increased duration of postoperative hypersensitivity to mechanical stimuli after ipsilateral hind paw incision was shown in needle prick animals. Basal nociception from 3 to 8 weeks of age was unaffected by neonatal repetitive needle pricking. Increased calcitonin gene‐related peptide expression was observed in the ipsilateral and contralateral lumbar spinal cord but not in the hind paw of needle prick animals at the age of 8 weeks. Innervation of tactile Aβ‐fibers in the spinal cord was not affected. Ourresults indicate both acute and long‐term effects of repetitive neonatal skin breaking procedures on nociception and long‐term plasticity of spinal but not peripheral innervation of nociceptive afferents. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

8.
Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short‐term results up to long‐term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after‐life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long‐term data and a time‐varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32‐year‐old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.  相似文献   

9.
Fetuses exposed to an inflammatory environment are predisposed to long‐term adverse neurological outcomes. However, the mechanism by which intrauterine inflammation (IUI) is responsible for abnormal fetal brain development is not fully understood. The mechanistic target of rapamycin (mTOR) signaling pathway is closely associated with fetal brain development. We hypothesized that mTOR signaling might be involved in fetal brain injury and malformation when fetuses are exposed to the IUI environment. A well‐established IUI model was utilized by intrauterine injection of lipopolysaccharide (LPS) to explore the effect of IUI on mTOR signaling in mouse fetal brains. We found that microglia activation in LPS fetal brains was increased, as demonstrated by elevated Iba‐1 protein level and immunofluorescence density. LPS fetal brains also showed reduced neuronal cell counts, decreased cell proliferation demonstrated by low Ki67‐positive density, and elevated neuron apoptosis evidenced by high expression of cleaved Caspase 3. Furthermore, we found that mTOR signaling in LPS fetal brains was elevated at 2 hr after LPS treatment, declined at 6 hr and showed overall inhibition at 24 hr. In summary, our study revealed that LPS‐induced IUI leads to increased activation of microglia cells, neuronal damage, and dynamic alterations in mTOR signaling in the mouse fetal brain. Our findings indicate that abnormal changes in mTOR signaling may underlie the development of future neurological complications in offspring exposed to prenatal IUI.  相似文献   

10.
Dopamine (DA) replacement therapy continues to be the gold standard treatment for Parkinson's disease (PD), as it improves key motor symptoms including bradykinesia and gait disturbances. With time, treatment induces side effects in the majority of patients, known as L‐DOPA‐induced dyskinesia (LID), which are often studied in animals by the use of unilateral, toxin‐induced rodent models. In this study, we used the progressive, genetic PD model MitoPark to specifically evaluate bilateral changes in motor behavior following long‐term L‐DOPA treatment at three different stages of striatal DA depletion. Besides locomotor activity, we assessed changes in gait with two automated gait analysis systems and the development of dyskinetic behavior. Long‐term treatment with a moderate, clinically relevant dose of L‐DOPA (8 mg/kg) gradually produced age‐dependent hyperactivity in MitoPark mice. In voluntary and forced gait analyses, we show that MitoPark mice with severe DA depletion have distinct gait characteristics, which are normalized to control levels following long‐term L‐DOPA treatment. The cylinder test showed an age‐dependent and gradual development of bilateral LID. Significant increase in striatal FosB and prodynorphin expression was found to accompany the behavior changes. Taken together, we report that MitoPark mice model both behavioral and biochemical characteristics of long‐term L‐DOPA treatment in PD patients and provide a novel, consistent and progressive animal model of dyskinesia to aid in the discovery and evaluation of better treatment options to counteract LID.  相似文献   

11.
The effects of drought on soil dynamics after fire are poorly known, particularly its long‐term (i.e., years) legacy effects once rainfall returns to normal. Understanding this is particularly important for nutrient‐poor soils in semi‐arid regions affected by fire, in which rainfall is projected to decrease with climate change. Here, we studied the effects of post‐fire drought and its legacy on soil microbial community structure and functionality in a CistusErica shrubland (Spain). Rainfall total and patterns were experimentally modified to produce an unburned control (natural rainfall) and four burned treatments: control (natural rainfall), historical control (long‐term average rainfall), moderate drought (percentile 8 historical rainfall, 5 months of drought per year), and severe drought (percentile 2, 7 months of drought). Soil nutrients and microbial community composition (ester‐linked fatty acid approach) and functionality (enzyme activities and C mineralization rate) were monitored during the first 4 years after fire under rainfall treatments, plus two additional ones without them (six post‐fire years). We found that the recovery of burned soils was lower under drought. Post‐fire drought increased nitrate in the short term and reduced available phosphorus, exchangeable potassium, soil organic matter, enzyme activities, and carbon mineralization rate. Moreover, drought decreased soil total microbial biomass and fungi, with bacteria becoming relatively more abundant. Two years after discontinuing the drought treatments, the drought legacy was significant for available phosphorus and enzyme activities. Although microbial biomass did not show any drought legacy effect, the proportion of fungi and bacteria (mainly gram‐positive) did, being lower and higher, respectively, in former drought‐treated plots. We show that drought has an important impact on soil processes, and that some of its effects persist for at least 2 years after the drought ended. Therefore, drought and its legacy effects can be important for modeling biogeochemical processes in burned soils under future climate change.  相似文献   

12.
Although species traits have the potential to disentangle long‐term effects of multiple, potentially confounded drivers in ecosystems, this issue has received very little attention in the literature. We aimed at filling this gap by assessing the relative effects of hydroclimatic and water quality factors on the trait composition of invertebrate assemblages over 30 years in the Middle Loire River (France). Using a priori predictions on the long‐term variation of trait‐based adaptations over the three decades, we evaluated the ability of invertebrate traits to indicate the effects of warming, discharge reduction and water quality improvement. Hydroclimatic and water quality factors contributed to up to 65% of the variation in trait composition. More than 70% of the initial trait response predictions made according to observed long‐term hydroclimatic changes were confirmed. They supported a general climate‐induced trend involving adapted resistance and resilience strategies. A partial confounding effect of water quality improvement acting on trophic processes was also highlighted, indicating that improved water quality management can significantly help to reduce some adverse effects of climate change. This trait‐based approach can have wider implications for investigating long‐term changes driven by multiple, potentially confounded factors, as frequently encountered in the context of global change.  相似文献   

13.
The tribosphenic molar is a dental apomorphy of mammals and the molar type from which all derived types originated. Its enamel coat is expected to be ancestral: a thin, evenly distributed layer of radial prismatic enamel. In the bat Myotis myotis, we reinvestigated the 3D architecture of the dental enamel using serial sectioning combined with scanning electron microscopy analyses, biometrics of enamel prisms and crystallites, and X‐ray diffraction. We found distinct heterotopies in enamel thickness (thick enamel on the convex sides of the crests, thin on the concave ones), angularity of enamel prisms, and in distribution of particular enamel types (prismatic, interprismatic, aprismatic) and demonstrated structural relations of these heterotopies to the cusp and crest organization of the tribosphenic molar. X‐ray diffraction demonstrated that the crystallites composing the enamel are actually the aggregates of much smaller primary crystallites. The differences among particular enamel types in degree of crystallite aggregation and the variation in structural microstrain of the primary crystallites (depending upon the duration and the mechanical context of mineralization) represent factors not fully understood as yet that may contribute to the complexity of enamel microarchitecture in a significant way. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Translocations have become an increasingly valuable tool for conservation in recent years, but assessing the successfulness of translocations and identifying factors that contribute to their success continue to challenge biologists. As a unique class of translocation, population reinforcements have received relatively little attention despite representing a substantial portion of translocation programs. Here, we conducted population viability analyses to quantify the effects of 216 reinforcement scenarios on the long‐term viability of four populations of Greater Prairie‐Chickens (Tympanuchus cupido pinnatus) in Wisconsin, USA, and used multiple linear regression to identify factors that had the greatest relative influence on population viability. We considered reinforcements from outside of the study area in addition to translocations among Wisconsin populations. We observed the largest decreases in site‐specific extinction probability and the largest increases in the number of sites persisting for 50 years when more vulnerable populations were targeted for reinforcement. Conversely, reinforcing the most stable sites caused the greatest reduction in regional extinction probability. We found that the number of translocated hens was a comparatively poor predictor of changes in long‐term population viability, whereas the earlier onset of reinforcement was consistently associated with the greatest increases in viability. Our results highlight the value of evaluating alternative reinforcement strategies a priori and considering the effects of reinforcement on metrics of long‐term population persistence.  相似文献   

15.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

16.
The microflora of the gastrointestinal tract (GIT) are a complex ecosystem, performing a number of beneficial functions. Irinotecan causes both early and late diarrhea, the latter possibly caused, in part, by changes in the microflora of the GIT. Female DA rats were given atropine subcutaneously, prior to a single 200 mg/kg intraperitoneal dose of irinotecan. Animals were monitored for diarrhea and killed at 30 and 60 mins, 2, 6, 12, 24, 48, and 72 hrs after chemotherapy administration. Control rats received no treatment. Fecal samples and stomach, jejunum, and colon samples were collected and stored at -70 degrees C until required. Standard microbiological culture techniques were used to grow and isolate the flora. Biochemical tests were used to identify the bacteria. The level of growth was noted for relative comparison between time points and graded accordingly. Early diarrhea was observed in the rats from 2-6 hrs after treatment, after which time the diarrhea resolved. Late onset diarrhea was apparent 72 hrs after treatment. Changes were seen in the flora of the stomach, jejunum, colon and feces. The majority of microflora changes were seen 6, 12, and 24 hrs after treatment, with a relative increase or decrease in the presence of bacteria in comparison with control rats. In some rats bacteria were not observed at all time points, and different bacteria not seen in control animals were identified in rats treated with irinotecan. These changes were observed up to 72 hrs after treatment. In conclusion, irinotecan treatment causes changes in the flora of the stomach, jejunum, colon, and feces of rats and is associated with the development of diarrhea. These changes in flora may have systemic effects and in particular may contribute to the development of chemotherapy-induced mucositis.  相似文献   

17.
The optimal sequence of irinotecan and oxaliplatin-based regimens for metastatic colorectal cancer remains unclear. We conducted a population-based observational study by retrospectively reviewing records from Taiwan’s National Health Insurance Research Database to explore this issue. Patients aged ≥20 years with metastatic colorectal cancer newly diagnosed between 2004 and 2008 (n = 9490) were enrolled in current study. Among these 9490 patients, 3895 patients (41.04%) did not receive any chemotherapy within the first three months after catastrophic illness registration. Patients who received best supportive care were older and had higher Charlson comorbidity indexes and incidences of comorbidities than those who received irinotecan-based regimens, oxaliplatin-based regimens, and 5-fluorouracil/capecitabine alone. Patients who received irinotecan followed by oxaliplatin-based regimens and those who received the reverse sequence were further stratified into arm A (n = 542) and arm B (n = 1156), respectively. The median first time to next treatment was not significantly different between arm A and arm B (210 days vs. 196 days; p = 0.17). However, the median second time to next treatment was longer in arm A than in arm B (155 days vs. 123 days; p = 0.006), which translated into a better overall survival (487 days vs. 454 days; p = 0.02). The crossover rate was higher in arm A than in arm B (47.84% vs. 41.61%; p<0.001). Multivariate Cox regression analyses showed that overall survival was comparable between the two chemotherapy sequences (p = 0.27). Our study suggested that irinotecan followed by oxaliplatin-based regimens might be a better chemotherapy treatment option for metastatic colorectal cancer than the reverse sequence given the higher crossover rate and potential overall survival benefit.  相似文献   

18.
Plant hydraulic conductance, namely the rate of water flow inside plants per unit time and unit pressure difference, varies largely from plant to plant and under different environmental conditions. Herein the main factors affecting: (a) the scaling between whole‐plant hydraulic conductance and leaf area; (b) the relationship between gas exchange at the leaf level and leaf‐specific xylem hydraulic conductance; (c) the short‐term physiological regulation of plant hydraulic conductance under conditions of ample soil water, and (d) the long‐term structural acclimation of xylem hydraulic conductance to changes in environmental conditions are reviewed. It is shown that plant hydraulic conductance is a highly plastic character that varies as a result of multiple processes acting at several time scales. Across species ranging from coniferous and broad‐leaved trees to shrubs, crop and herbaceous species, and desert subshrubs, hydraulic conductance scaled linearly with leaf area, as expected from first principles. Despite considerable convergence in the scaling of hydraulic properties, significant differences were apparent across life forms that underlie their different abilities to conduct gas exchange at the leaf level. A simple model of carbon allocation between leaves and support tissues explained the observed patterns and correctly predicted the inverse relationships with plant height. Therefore, stature appears as a fundamental factor affecting gas exchange across plant life forms. Both short‐term physiological regulation and long‐term structural acclimation can change the levels of hydraulic conductance significantly. Based on a meta‐analysis of the existing literature, any change in environmental parameters that increases the availability of resources (either above‐ or below‐ground) results in the long‐term acclimation of a less efficient (per unit leaf area) hydraulic system.  相似文献   

19.
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well‐recognized Darwinian evolution has well‐explained long‐term adaptation scenarios; however, “rapid” processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation‐sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole‐genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high‐temperature exposure or after 3 hr of low‐salinity challenge. In addition, we detected time‐dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress‐induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole‐genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.  相似文献   

20.
A study was conducted to evaluate the long‐term effects of biosolids amendment on restoration of disturbed sagebrush steppe habitat in northwestern Colorado. Twenty‐four years after biosolids amendment, soil fertility and plant community development were studied in replicated plots receiving various biosolids amendments on two different substrates. The two substrates used were a subsoil, determined to have low initial fertility, and a topsoil over retorted shale substrate, determined to have relatively high initial fertility. Results suggest that biosolids amendments have long‐lasting effects on soil fertility and plant community composition, but these effects vary between the two substrates that were utilized. Within the plots established on subsoil, the long‐term effect of biosolids was a reduction in plant species diversity and dominance by perennial grasses. On the topsoil substrate, there was a decrease in perennial grasses and an increase in shrub dominance with increasing biosolids. Results demonstrate the importance of considering initial soil conditions, seed mixture, and biosolids application rate when using biosolids for restoration of disturbed sagebrush steppe habitat. The long‐term effects of the biosolids treatments at this site demonstrate the need to consider restoration treatment effects over longer and more ecologically meaningful time frames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号