首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

4.
5.
Long-chain n-3 polyunsaturated fatty acids are known to have beneficial effects on intestinal health. However, the underling mechanisms are largely unknown. The present study was conducted to investigate whether docosahexaenoic acid (DHA) attenuates TNF-α-induced intestinal cell injury and barrier dysfunction by modulating necroptosis signalling. Intestinal porcine epithelial cell line 1 was cultured with or without 12.5 µg/ml DHA, followed by exposure to 50 ng/ml TNF-α for indicated time periods. DHA restored cell viability and cell number triggered by TNF-α. DHA also improved barrier function, which was indicated by increased trans-epithelial electrical resistance, decreased FD4 flux and increased membrane localisation of zonula occludins (ZO-1) and claudin-1. Moreover, DHA suppressed cell necrosis in TNF-α-challenged cells, as shown in the IncuCyte ZOOM™ live cell imaging system and transmission electron microscopy. In addition, DHA decreased protein expression of TNF receptor, receptor interacting protein kinase 1, RIP3 and phosphorylation of mixed lineage kinase-like protein, phosphoglycerate mutase family 5, dynamin-related protein 1 and high mobility group box-1 protein. Furthermore, DHA suppressed protein expression of caspase-3 and caspase-8. Collectively, these results indicate that DHA is capable of alleviating TNF-α-induced cell injury and barrier dysfunction by suppressing the necroptosis signalling pathway.  相似文献   

6.
Cardiovascular endothelial barrier dysfunction is associated with a number of cardiovascular diseases. This study aims to investigate the role of platelet endothelial cell adhesion molecule‐1 (PECAM1) in the maintenance of the vascular endothelial barrier integrate. Human umbilical vein endothelial cells (HUVECs) were cultured into monolayers using as an in vitro model to assess the endothelial barrier function. Knockdown of the gene of PECAM1 markedly reduced the transendothelial resistance and increased the permeability of the HUVEC monolayers. From the wild HUVECs, we detected a complex of PECAM1, claudin1, occluding and endothelial cell selective adhesion molecule (ESAM); such a complex was not detected in the PECAM1‐deficient HUVECs. Knockdown of either claudin1, or occludin, or ESAM, did not affect the formation of the tight junction (TJ) complex. Exposure to recombinant interleukin (IL)‐13 inhibited the expression of PECAM1 and down‐regulated the HUVEC monolayer barrier function. PECAM1 plays an important role in the formation of TJ complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage and induced apoptosis of U2OS cells by regulation of Mki67, PARP, caspase 3 and H2AX, and Western blot assay showed an activation of p53 signalling pathway. When P53 was knocked down by siRNA, the subsequent downstream signalling was blocked, indicating a p53‐dependent mechanism of TB on U2OS cells (p53 wt). Using osteosarcoma cell lines with p53 mutations (HOS, SAOS‐2 and MG63), we found that TB exerted stronger inhibitory effect on U2OS cells than that on p53‐mut cell lines, but it also exerted obvious effect on SAOS‐2 cells (p53 null), suggesting an activation of p53‐independent pathway in the p53‐null cells. Interestingly, theabrownin was found to have no toxicity on normal tissue in vivo and could even increase the viability of p53‐wt normal cells. In sum, theabrownin could trigger DNA damage and induce apoptosis on U2OS cells via a p53‐dependent mechanism, being a promising candidate for osteosarcoma therapy.  相似文献   

10.
11.
12.
Disruption of the intestinal epithelial barrier, that involves the activation of C‐Jun N‐terminal kinase (JNK), contributes to initiate and accelerate inflammation in inflammatory bowel disease. Metformin has unexpected beneficial effects other than glucose‐lowering effects. Here, we provided evidence that metformin can protect against intestinal barrier dysfunction in colitis. We showed that metformin alleviated dextran sodium sulphate (DSS)‐induced decreases in transepithelial electrical resistance, FITC‐dextran hyperpermeability, loss of the tight junction (TJ) proteins occludin and ZO‐1 and bacterial translocation in Caco‐2 cell monolayers or in colitis mice models. Metformin also improved TJ proteins expression in ulcerative colitis patients with type 2 diabetes mellitus. We found that metformin ameliorated the induction of colitis and reduced the levels of pro‐inflammatory cytokines IL‐6, TNF‐a and IL‐1β. In addition, metformin suppressed DSS‐induced JNK activation, an effect dependent on AMP‐activated protein kinase α1 (AMPKα1) activation. Consistent with this finding, metformin could not maintain the barrier function of AMPKα1‐silenced cell monolayers after DSS administration. These findings highlight metformin protects against intestinal barrier dysfunction. The potential mechanism may involve in the inhibition of JNK activation via an AMPKα1‐dependent signalling pathway.  相似文献   

13.
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.  相似文献   

14.
15.
Endothelial dysfunction contributes to diabetic macrovascular complications, resulting in high mortality. Recent findings demonstrate a pathogenic role of P53 in endothelial dysfunction, encouraging the investigation of the effect of P53 inhibition on diabetic endothelial dysfunction. Thus, high glucose (HG)‐treated endothelial cells (ECs) were subjected to pifithrin‐α (PFT‐α)—a specific inhibitor of P53, or P53‐small interfering RNA (siRNA), both of which attenuated the HG‐induced endothelial inflammation and oxidative stress. Moreover, inhibition of P53 by PFT‐α or P53‐siRNA prohibited P53 acetylation, decreased microRNA‐34a (miR‐34a) level, leading to a dramatic increase in sirtuin 1 (SIRT1) protein level. Interestingly, the miR‐34a inhibitor (miR‐34a‐I) and PFT‐α increased SIRT1 protein level and alleviated the HG‐induced endothelial inflammation and oxidative stress to a similar extent; however, these effects of PFT‐α were completely abrogated by the miR‐34a mimic. In addition, SIRT1 inhibition by EX‐527 or Sirt1‐siRNA completely abolished miR‐34a‐I's protection against HG‐induced endothelial inflammation and oxidative stress. Furthermore, in the aortas of streptozotocin‐induced diabetic mice, both PFT‐α and miR‐34a‐I rescued the inflammation, oxidative stress and endothelial dysfunction caused by hyperglycaemia. Hence, the present study has uncovered a P53/miR‐34a/SIRT1 pathway that leads to endothelial dysfunction, suggesting that P53/miR‐34a inhibition could be a viable strategy in the management of diabetic macrovascular diseases.  相似文献   

16.
17.
18.
Gastric carcinoma is one of the most common malignancies worldwide and the second most frequent cause of cancer‐related death in China. Protein regulator of cytokinesis 1 (PRC1) is involved in cytokinesis and plays key roles in microtubule organization in eukaryotes. This study was aimed to analyse the expression and to investigate the functional role of PRC1 in gastric tumorigenesis. The expression of PRC1 was evaluated by qRT‐PCR, Western blot and immunohistochemistry. The biological function of PRC1 was determined by CCK‐8 proliferation assays, monolayer colony formation, xenografted nude mice and cell invasion assays by shRNA‐mediated knockdown in AGS and HGC27 cells. The regulation of PRC1 expression by piperlongumine was also investigated using dual‐luciferase reporter assay and ChIP‐qPCR analysis. PRC1 was up‐regulated in primary gastric cancers. Overexpression of PRC1 in gastric cancers was associated with poor disease‐specific survival and overall survival. PRC1 knockdown in AGS and HGC27 cell lines suppressed proliferation, reduced monolayer colony formation, inhibited cell invasion and migration ability and induced cell‐cycle arrest and apoptosis. Inhibition of PRC1 also suppressed tumour growth in vivo. We finally confirmed that PRC1 is a novel downstream target of piperlongumine in gastric cancer. Our findings supported the oncogenic role of PRC1 in gastric carcinogenesis. PRC1 might serve as a prognostic biomarker and potential therapeutic target for gastric carcinoma.  相似文献   

19.
20.
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号