首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to rapid advancements in NGS (next generation sequen-cing), genomic alteration is now considered an essential pre-dictive biomarkers that impact the treatment decision in many cases of cancer. Among the various predictive biomarkers, tumor mutation burden (TMB) was identified by NGS and was con-sidered to be useful in predicting a clinical response in cancer cases treated by immunotherapy. In this study, we directly com-pared the lab-developed-test (LDT) results by target sequencing panel, K-MASTER panel v3.0 and whole-exome sequencing (WES) to evaluate the concordance of TMB. As an initial step, the reference materials (n = 3) with known TMB status were used as an exploratory test. To validate and evaluate TMB, we used one hundred samples that were acquired from surgically resected tissues of non-small cell lung cancer (NSCLC) patients. The TMB of each sample was tested by using both LDT and WES methods, which extracted the DNA from samples at the same time. In addition, we evaluated the impact of capture re-gion, which might lead to different values of TMB; the evalu-ation of capture region was based on the size of NGS and target sequencing panels. In this pilot study, TMB was evalu-ated by LDT and WES by using duplicated reference samples; the results of TMB showed high concordance rate (R2 = 0.887). This was also reflected in clinical samples (n = 100), which showed R2 of 0.71. The difference between the coding sequence ratio (3.49%) and the ratio of mutations (4.8%) indicated that the LDT panel identified a relatively higher number of mutations. It was feasible to calculate TMB with LDT panel, which can be useful in clinical practice. Furthermore, a customized approach must be developed for calculating TMB, which differs according to cancer types and specific clinical settings.  相似文献   

2.
Constructs based on the pSUPER vector [Science 296 (2002) 550] and encoding small interfering RNAs specific for the Type I, Type II, or Type III isozymes of mammalian (rat) hexokinase were prepared. Transfection of Chinese hamster ovary and HeLa cells with these vectors resulted in selective depletion of the respective isozymes. A Zeocin marker was incorporated into the modified pSUPER vector, permitting isolation of stably transfected cell lines selectively depleted of the respective isozyme.  相似文献   

3.
Muscular dystrophy‐dystroglycanopathy (limb‐girdle), type C, 9 (MDDGC9) is the rarest type of autosomal recessive muscular dystrophies. MDDGC9 is manifested with an early onset in childhood. Patients with MDDGC9 usually identified with defective glycosylation of DAG1, hence it is known as “dystroglycanopathies”. Here, we report a Chinese pedigree presented with mild MDDGC9. The proband is a 64 years old Chinese man. In this family, both the proband and proband's younger brother have been suffering from mild and late onset MDDGC9. Muscle biopsy showed that the left deltoid muscle with an advanced stage of dystrophic change. Immunohistochemistry staining of dystrophin, α‐sarcoglycan, β‐sarcoglycan and dysferlin are normal. Molecular genetic analysis of the proband has been done with whole exome sequencing. A homozygous novel missense mutation (c.2326C>T; p.R776C) in the exon 3 of the DAG1 gene has been identified in the proband. Sanger sequencing revealed that this missense mutation is co‐segregated well among the affected and unaffected (carrier) family members. This mutation is not detected in 200 normal healthy control individuals. This novel homozygous missense mutation (c.2326C>T) causes substitution of arginine by cystine at the position of 776 (p.R776C) which is evolutionarily highly conserved. Immunoblotting studies revealed that a significant reduction of α‐dystroglycan expression in the muscle tissue. The novelty of our study is that it is a first report of DAG1 associated muscular dystrophy‐dystroglycanopathy (limb‐girdle), type C, 9 (MDDGC9) with mild and late age of onset. In Chinese population this is the first report of DAG1 associated MDDGC9.  相似文献   

4.
5.
6.
Cardiac conduction disease (CCD) is a serious disorder and the leading cause of mortality worldwide. It is characterized by arrhythmia, syncope or even sudden cardiac death caused by the dysfunction of cardiac voltage‐gated channel. Previous study has demonstrated that mutations in genes encoding voltage‐gated channel and related proteins were the crucial genetic lesion of CCD. In this study, we employed whole‐exome sequencing to explore the potential causative genes in a Chinese family with ventricular tachycardia and syncope. A novel nonsense mutation (c.565C>T/p.R189X) of glycerol‐3‐phosphate dehydrogenase‐like (GPD1L) was identified and co‐segregated with the affected family members. GPD1L is a crucial interacting protein of SCN5A, a gene encoded sodium channel α‐subunit Nav1.5 and mainly associated with Brugada syndrome (BrS). The novel mutation (c.565C>T/p.R189X) may result in a premature stop codon at position 189 in exon 4 of the GPD1L gene and lead to functional haploinsufficiency of GPD1L due to mRNA carrying this mutation will be degraded by nonsense‐mediated mRNA decay, which has been confirmed by Western blot in HEK293 cells transfected HIS‐GPD1L plasmid. The levels of GPD1L decreasing may disturb the function of Nav1.5 and induce arrhythmia and syncope in the end. In conclusion, our study not only further supported the important role of GPD1L in CCD, but also expanded the spectrum of GPD1L mutations and will contribute to the genetic diagnosis and counselling of families with CCD.  相似文献   

7.
8.
Melanoma can develop in a congenital melanocytic nevus (CMN). In fact, a large CMN is associated with a high risk of developing melanoma. Although melanomas arising from CMNs are thought to have a pathogenesis distinct from conventional melanomas, no studies have been conducted on the evolution or tumor heterogeneity of CMN melanomas. We applied multi‐region whole‐exome sequencing to investigate the clonal nature of driver events and evolutionary processes in CMNs and melanomas arising from CMNs. In two patients, we observed an independent subclonal evolution in cancerized fields of CMNs and chromosome 8q amplification in both melanomas arising from CMNs. The amplification of MYC, located in chromosome 8q, was correlated with the percentage of tumor cells expressing high levels of MYC protein detected in melanoma cells by immunohistochemistry. Our analysis suggests that each CMN cell may evolve sporadically and that amplification of MYC might be a key event for melanoma development in CMNs.  相似文献   

9.
Autosomal recessive polycystic kidney disease (ARPKD) is a rare hereditary renal cystic disease involving multiple organs, mainly the kidney and liver. Parents who had an affected child with ARPKD are in strong demand for an early and reliable prenatal diagnosis to guide the future pregnancies. Here we provide an example of prenatal diagnosis of an ARPKD family where traditional antenatal ultrasound examinations failed to produce conclusive results till 26th week of gestation. Compound heterozygous mutations c.274C>T (p.Arg92Trp) and c.9059T>C (p.Leu3020Pro) were identified using targeted exome sequencing in the patient and confirmed by Sanger sequencing. Further, the mother and father were revealed to be carriers of heterozygous c.274C>T and c.9059T>C mutations, respectively. Molecular prenatal diagnosis was performed for the current pregnancy by direct sequencing plus linkage analysis. Two mutations identified in the patient were both found in the fetus. In conclusion, compound heterozygous PKHD1 mutations were elucidated to be the molecular basis of the patient with ARPKD. The newly identified c.9059T>C mutation in the patient expands mutation spectrum in PKHD1 gene. For those ultrasound failed to provide clear diagnosis, we propose the new prenatal diagnosis procedure: first, screening underlying mutations in PKHD1 gene in the proband by targeted exome sequencing; then detecting causative mutations by direct sequencing in the fetal DNA and confirming results by linkage analysis.  相似文献   

10.
11.
12.
Focal segmental glomerulosclerosis (FSGS) is the most common glomerular histological lesion associated with high‐grade proteinuria and end‐stage renal disease. Histologically, FSGS is characterized by focal segmental sclerosis with foot process effacement. The aim of this study was to identify the disease‐causing mutation in a four‐generation Chinese family with FSGS. A novel missense mutation, c.1856G>A (p.Gly619Asp), in the collagen type IV alpha‐4 gene (COL4A4) was identified in six patients and it co‐segregated with the disease in this family. The variant is predicted to be disease‐causing and results in collagen IV abnormalities. Our finding broadens mutation spectrum of the COL4A4 gene and extends the phenotypic spectrum of collagen IV nephropathies. Our study suggests that exome sequencing is a cost‐effective and efficient approach for identification of disease‐causing mutations in phenotypically complex or equivocal disorders. Timely screening for COL4A3/COL4A4 mutations in patients with familial FSGS may help both accurately diagnose and treat these patients.  相似文献   

13.
Celiac disease (CD) is a gastrointestinal disorder whose genetic basis is not fully understood. Therefore, we studied a Saudi family with two CD affected siblings to discover the causal genetic defect. Through whole exome sequencing (WES), we identified that both siblings have inherited an extremely rare and deleterious CPED1 genetic variant (c.241 A > G; p.Thr81Ala) segregating as autosomal recessive mutation, suggesting its putative causal role in the CD. Saudi population specific minor allele frequency (MAF) analysis has confirmed its extremely rare prevalence in homozygous condition (MAF is 0.0004). The Sanger sequencing analysis confirmed the absence of this homozygous variant in 100 sporadic Saudi CD cases. Genotype-Tissue Expression (GTEx) data has revealed that CPED1 is abundantly expressed in gastrointestinal mucosa. By using a combination of systems biology approaches like protein 3D modeling, stability analysis and nucleotide sequence conservation analysis, we have further established that this variant is deleterious to the structural and functional aspects of CPED1 protein. To the best of our knowledge, this variant has not been previously reported in CD or any other gastrointestinal disease. The cell culture and animal model studies could provide further insight into the exact role of CPED1 p.Thr81Ala variant in the pathophysiology of CD. In conclusion, by using WES and systems biology analysis, present study for the first-time reports CPED1 as a potential causative gene for CD in a Saudi family with potential implications to both disease diagnosis and genetic counseling.  相似文献   

14.
15.
16.
Alport syndrome (AS) is an inherited disorder and clinically characterized by glomerulonephritis and end-stage kidney disease (ESRD). The aim of this study was to identify the gene responsible for glomerulopathy in a 4-generation Chinese pedigree. Exome sequencing was conducted in four patients of the family, and then direct sequencing was performed in other members of the pedigree. A novel missense mutation c.368G>A (p.Gly123Glu) in the collagen type IV alpha-5 gene (COL4A5) was found to be the genetic cause. The p.Gly123Glu mutation occurs prior to Gly-X-Y repeats in the alpha-5 chain of type IV collagen. Neither sensorineural hearing loss nor ocular abnormalities were present in patients of this family. Other clinical features, such as age of onset, age of ESRD, disease severity and complications, varied among patients of this family. Our finding may provide new insights into the cause and diagnosis of AS, and also have implications for genetic counseling.  相似文献   

17.
Meckel syndrome (MKS) is a pre‐ or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo‐occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35‐years‐old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715*) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild‐type CEP290 protein of 290 KD. Hence, it is a loss‐of‐function variant. We also found that the mutant cilium appears longer in length than the wild‐type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.  相似文献   

18.
Muscular dystrophy‐dystroglycanopathy (MDDG) is a genetically and clinically heterogeneous group of muscular disorders, characterized by congenital muscular dystrophy or later‐onset limb‐girdle muscular dystrophy accompanied by brain and ocular abnormalities, resulting from aberrant alpha‐dystroglycan glycosylation. Exome sequencing and Sanger sequencing were performed on a six‐generation consanguineous Han Chinese family, members of which had autosomal recessive MDDG. Compound heterozygous mutations, c.1338+1G>A (p.H415Kfs*3) and c.1457G>C (p.W486S, rs746849558), in the protein O‐mannosyltransferase 1 gene (POMT1), were identified as the genetic cause. Patients that exhibited milder MDDG manifested as later‐onset progressive proximal pelvic, shoulder girdle and limb muscle weakness, joint contractures, mental retardation and elevated creatine kinase, without structural brain or ocular abnormalities, were further genetically diagnosed as MDDGC1. The POMT1 gene splice‐site mutation (c.1338+1G>A) which leads to exon 13 skipping and results in a truncated protein may contribute to a severe phenotype, while the allelic missense mutation (p.W486S) may reduce MDDG severity. These findings may expand phenotype and mutation spectrum of the POMT1 gene. Clinical diagnosis supplemented with molecular screening may result in more accurate diagnoses of, prognoses for, and improved genetic counselling for this disease.  相似文献   

19.
Heavy‐ion beams have been widely utilized as a novel and effective mutagen for mutation breeding in diverse plant species, but the induced mutation spectrum is not fully understood at the genome scale. We describe the development of a multiplexed and cost‐efficient whole‐exome sequencing procedure in rice, and its application to characterize an unselected population of heavy‐ion beam‐induced mutations. The bioinformatics pipeline identified single‐nucleotide mutations as well as small and large (>63 kb) insertions and deletions, and showed good agreement with the results obtained with conventional polymerase chain reaction (PCR) and sequencing analyses. We applied the procedure to analyze the mutation spectrum induced by heavy‐ion beams at the population level. In total, 165 individual M2 lines derived from six irradiation conditions as well as eight pools from non‐irradiated ‘Nipponbare’ controls were sequenced using the newly established target exome sequencing procedure. The characteristics and distribution of carbon‐ion beam‐induced mutations were analyzed in the absence of bias introduced by visual mutant selections. The average (±SE) number of mutations within the target exon regions was 9.06 ± 0.37 induced by 150 Gy irradiation of dry seeds. The mutation frequency changed in parallel to the irradiation dose when dry seeds were irradiated. The total number of mutations detected by sequencing unselected M2 lines was correlated with the conventional mutation frequency determined by the occurrence of morphological mutants. Therefore, mutation frequency may be a good indicator for sequencing‐based determination of the optimal irradiation condition for induction of mutations.  相似文献   

20.
Heterotaxy syndrome (HS) involves dysfunction of multiple systems resulting from abnormal left-right (LR) body patterning. Most HS patients present with complex congenital heart diseases (CHD), the disability and mortality of HS patients are extremely high. HS has great heterogeneity in phenotypes and genotypes, which have rendered gene discovery challenging. The aim of this study was to identify novel genes that underlie pathogenesis of HS patients with CHD. Whole exome sequencing was performed in 25 unrelated HS cases and 100 healthy controls; 19 nonsynonymous variants in 6 novel candidate genes (FLNA, ITGA1, PCNT, KIF7, GLI1, KMT2D) were identified. The functions of candidate genes were further analyzed in zebrafish model by CRISPR/Cas9 technique. Genome-editing was successfully introduced into the gene loci of flna, kmt2d and kif7, but the phenotypes were heterogenous. Disruption of each gene disturbed normal cardiac looping while kif7 knockout had a more prominent effect on liver budding and pitx2 expression. Our results revealed three potential HS pathogenic genes with probably different molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号