首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.  相似文献   

2.
Due to an increasing emergence of new and drug‐resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β‐catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β‐catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up‐regulated and 20 miRNAs that down‐regulated the Wnt/β‐catenin signalling pathway. Fifteen miRNAs were validated to up‐regulate and five miRNAs to down‐regulate the pathway. Overexpression of four selected miRNAs (miR‐193b, miR‐548f‐1, miR‐1‐1, and miR‐509‐1) that down‐regulated the Wnt/β‐catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34‐infected HEK293 cells, and progeny virus production. Overexpression of miR‐193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR‐193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that β‐catenin was a target of miR‐193b, and β‐catenin rescued miR‐193b‐mediated suppression of IAV infection. miR‐193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus‐mediated gene transfer of miR‐193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR‐193b represses IAV infection by inhibiting Wnt/β‐catenin signalling.  相似文献   

3.
Colorectal cancer (CRC) is the leading cause of cancer death, and its 5‐year survival rate remains unsatisfactory. Recent studies have revealed that ubiquitin‐specific protease 44 (USP44) is a cancer suppressor or oncogene depending on the type of neoplasm. However, its role in CRC remains unclear. Here, we found that the USP44 expression level was markedly decreased in CRC, and USP44 overexpression inhibited proliferation while enhancing apoptosis in CRC cells, suggesting that USP44 is a cancer suppressor in CRC. We then investigated if USP44 functioned through regulating the Wnt/β‐catenin pathway. We found that USP44 overexpression increased the Axin1 protein while decreasing β‐catenin, c‐myc, and cyclin D1 proteins, suggesting that USP44 inhibited the activation of the Wnt/β‐catenin pathway. Moreover, we found that two Wnt/β‐catenin activators, LiCl and SKL2001, both attenuated oeUSP44‐mediated proliferation and apoptosis in CRC cells. Collectively, these data points indicated that USP44 inhibited proliferation while promoting apoptosis in CRC cells by inhibiting the Wnt/β‐catenin pathway. Interestingly, we observed that USP44 overexpression did not affect the Axin1 mRNA level. Further study uncovered that USP44 interacted with Axin1 and reduced the ubiquitination of Axin1. Furthermore, Axin1 knock‐down abolished the effects of oeUSP44 on proliferation, apoptosis, and Wnt/β‐catenin activity in CRC cells. Taken together, this study demonstrates that USP44 inhibits proliferation while enhancing apoptosis in CRC cells by inactivating the Wnt/β‐catenin pathway via Axin1 deubiquitination. USP44 is a cancer suppressor in CRC and a potential target for CRC therapy.  相似文献   

4.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

5.
6.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
GSK‐3β is a key molecule in several signalling pathways, including the Wnt/β‐catenin signalling pathway. There is increasing evidence suggesting Wnt/β‐catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β‐catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β‐catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6‐bromoindirubin‐3′‐oxime), a specific GSK‐3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β‐tubulin III). Moreover, the expression of pGSK‐3β and stabilized β‐catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK‐3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β‐catenin signalling pathway towards neural fate.  相似文献   

8.
As fracture healing is related to gene expression, fracture healing is prospected to be implicated in long non‐coding RNAs (lncRNAs). This study focuses on the effects of epigenetic silencing of long non‐coding RNA maternally expressed gene 3 (lncRNA MEG3) on fracture healing by regulating the Wnt/β‐catenin signalling pathway. Genes expressed in fracture were screened using bioinformatics and the subcellular location of MEG3 was determined using FISH. Next, we successfully established tibia fracture (TF) models of C57BL/6J and Col2a1‐ICAT mice and the effect of silencing lncRNA MEG3 on fracture healing was detected after TF mice were treated with phosphate buffer saline (PBS), MEG3 siRNA and scramble siRNA. X‐ray imaging, Safranin‐O/fast green and haematoxylin‐eosin (HE) staining and histomorphometrical and biomechanical analysis were adopted to observe and to detect the fracture healing conditions. Additionally, the positive expression of collagen II and osteocalcin was examined using immunohistochemistry. At last, in the in vitro experiment, the relationship of MEG3 and the Wnt/β‐catenin signalling pathway in fraction healing was investigated. MEG3 was located in the cell nucleus. In addition, it was found that MEG3 and the Wnt/β‐catenin signalling pathway were associated with fraction healing. Moreover, silencing MEG3 was proved to elevate callus area and maximum bending load and to furthermore enhance the recanalization of bone marrow cavity. Finally, MEG3 knockdown elevated levels of Col10a1, Runx2, Osterix, Osteocalcin, Wnt10b and β‐catenin/β‐catenin whereas it reduced p‐GSK‐3β/GSK‐3β levels. Taken together, our data supported that epigenetic silencing of lncRNA MEG3 could promote the tibia fracture healing by activating the Wnt/β‐catenin signalling pathway.  相似文献   

9.
Vascular calcification (VC) is a pathological process underpinning major cardiovascular conditions and has attracted public attention due to its high morbidity and mortality. Chronic kidney disease (CKD) is a common disease related to VC. Ginsenoside Rb1 (Rb1) has been reported to protect the cardiovascular system against vascular diseases, yet its role in VC and the underlying mechanisms remain unclear. In this study, we established a CKD‐associated VC rat model and a β‐glycerophosphate (β‐GP)‐induced vascular smooth muscle cell (VSMC) calcification model to investigate the effects of Rb1 on VC. Our results demonstrated that Rb1 ameliorated calcium deposition and VSMC osteogenic transdifferentiation both in vivo and in vitro. Rb1 treatment inhibited the Wnt/β‐catenin pathway by activating peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), and confocal microscopy was used to show that Rb1 inhibited β‐catenin nuclear translocation in VSMCs. Furthermore, SKL2001, an agonist of the Wnt/β‐catenin pathway, compromised the vascular protective effect of Rb1. GW9662, a PPAR‐γ antagonist, reversed Rb1's inhibitory effect on β‐catenin. These results indicate that Rb1 exerted anticalcific properties through PPAR‐γ/Wnt/β‐catenin axis, which provides new insights into the potential theraputics of VC.  相似文献   

10.
Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid‐induced rat epilepsy model to investigate whether Wnt/β‐catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β‐catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up‐regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid‐induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β‐catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β‐catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β‐catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy.  相似文献   

11.
The Wnt/β‐catenin pathway has been implicated in leukemogenesis. We found β‐catenin abnormally accumulated in both human acute T cell leukemia Jurkat cells and human erythroleukemia HEL cells. β‐Catenin can be significantly down‐regulated by the Janus kinase 2 specific inhibitor AG490 in these two cells. AG490 also reduces the luciferase activity of a reporter plasmid driven by LEF/β‐catenin promoter. Similar results were observed in HEL cells infected with lentivirus containing shRNA against JAK2 gene. After treatment with 50 µM AG490 or shRNA, the mRNA expression levels of β‐catenin, APC, Axin, β‐Trcp, GSK3α, and GSK3β were up‐regulated within 12–16 h. However, only the protein levels of GSK3β and β‐Trcp were found to have increased relative to untreated cells. Knockdown experiments revealed that the AG490‐induced inhibition of β‐catenin can be attenuated by shRNA targeting β‐TrCP. Taken together; these results suggest that β‐Trcp plays a key role in the cross‐talk between JAK/STAT and Wnt/β‐catenin signaling in leukemia cells. J. Cell. Biochem. 111: 402–411, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR ) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway.  相似文献   

14.
Cardiac differentiation of human pluripotent stem cells may be induced under chemically defined conditions, wherein the regulation of Wnt/β‐catenin pathway is often desirable. Here, we examined the effect of trolox, a vitamin E analog, on the cardiac differentiation of human embryonic stem cells (hESCs). 6‐Hydroxy‐2,5,7,8‐tetramethylchromane‐2‐carboxylic acid (Trolox) significantly enhanced cardiac differentiation in a time‐ and dose‐dependent manner after the mesodermal differentiation of hESCs. Trolox promoted hESC cardiac differentiation through its inhibitory activity against the Wnt/β‐catenin pathway. This study demonstrates an efficient cardiac differentiation method and reveals a novel Wnt/β‐catenin regulator.  相似文献   

15.
Canonical Wnt/β‐catenin signaling has been implicated in multiple developmental events including the regulation of proliferation, cell fate, and differentiation. In the inner ear, Wnt/β‐catenin signaling is required from the earliest stages of otic placode specification through the formation of the mature cochlea. Within the avian inner ear, the basilar papilla (BP), many Wnt pathway components are expressed throughout development. Here, using reporter constructs for Wnt/β‐catenin signaling, we show that this pathway is active throughout the BP (E6‐E14) in both hair cells (HCs) and supporting cells. To characterize the role of Wnt/β‐catenin activity in developing HCs, we performed gain‐ and loss‐of‐function experiments in vitro and in vivo in the chick BP and zebrafish lateral line systems, respectively. Pharmacological inhibition of Wnt signaling in the BP and lateral line neuromasts during the periods of proliferation and HC differentiation resulted in reduced proliferation and decreased HC formation. Conversely, pharmacological activation of this pathway significantly increased the number of HCs in the lateral line and BP. Results demonstrated that this increase was the result of up‐regulated cell proliferation within the Sox2‐positive cells of the prosensory domains. Furthermore, Wnt/β‐catenin activation resulted in enhanced HC regeneration in the zebrafish lateral line following aminoglycoside‐induced HC loss. Combined, our data suggest that Wnt/β‐catenin signaling specifies the number of cells within the prosensory domain and subsequently the number of HCs. This ability to induce proliferation suggests that the modulation of Wnt/β‐catenin signaling could play an important role in therapeutic HC regeneration. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 438–456, 2014  相似文献   

16.
17.
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.  相似文献   

18.
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d ‐galactose (d ‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d ‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction.  相似文献   

19.
20.
TGF‐β1 (transforming growth factor‐β1) plays a central role in regulating proliferation, migration and differentiation of dental pulp cells during the repair process after tooth injury. Our previous study showed that p38 mitogen‐activated protein kinase may act downstream of TGF‐β1 signalling to effect the differentiation of dental pulp cells. However, the molecular mechanisms that trigger and regulate the process remain to be elucidated. TGF‐β1 interacts with signalling pathways such as Wnt/β‐catenin and Rho to induce diverse biological effects. TGF‐β1 activates β‐catenin signalling, increases β‐catenin nuclear translocation and interacts with LEF/TCF to regulate gene expression. Morphologic changes in response to TGF‐β1 are associated with activation of Rho GTPases, but are abrogated by inhibitors of Rho‐associated kinase, a major downstream target of Rho. These results suggest that the Wnt/β‐catenin and Rho pathways may mediate the downstream events of TGF‐β1 signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号