首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many B‐cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK‐92 cells, a continuously growing NK cell line, showing that anti‐CD19‐CAR (αCD19‐CAR) engineered NK‐92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK‐92 cells. The ‘first generation’ CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc‐tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK‐92 and transduced αCD19‐CAR NK‐92 cells towards CD19 negative targets was found. However, αCD19‐CAR NK‐92 cells specifically and efficiently lysed CD19 expressing B‐precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK‐92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK‐92 should be considered a treatment option for patients with lymphoid malignancies.  相似文献   

2.
Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV ) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV . Furthermore, expression of inactive glycogen synthase kinase 3 (GSK ‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK ‐3β with lithium. Conversely, inhibition of PI 3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV . Taken together, we conclude that GSK ‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.

Cover Image for this Issue: doi: 10.1111/jnc.14165 .
  相似文献   

3.
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase‐1 (HO‐1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO‐1 recombinant adenovirus (HO‐MSCs) for stable expression of HO‐1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor‐α (TNF‐α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad‐MSCs, Ad‐HO + MSCs or HO‐MSCs. mRNA and protein expression of Zona occludens‐1 (ZO‐1) and human HO‐1 and the release of cytokines were measured. ZO‐1 and human HO‐1 in Caco2 were significantly decreased after treatment with TNF‐α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO‐1 was not significantly affected by Caco2 treatment with TNF‐α, Ad‐HO, and MSCs. In contrast, ZO‐1 and human HO‐1 increased significantly when the damaged Caco2 was treated with HO‐MSCs. HO‐MSCs showed the strongest effect on the expression of ZO‐1 in colon epithelial cells. Coculture with HO‐MSCs showed the most significant effects on reducing the expression of IL‐2, IL‐6, IFN‐γ and increasing the expression of IL‐10. HO‐MSCs protected the intestinal epithelial barrier, in which endogenous HO‐1 was involved. HO‐MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti‐inflammatory factors. These results suggested that HO‐MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO‐1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases.  相似文献   

4.
Intravenously injected granulocyte macrophage colony‐stimulating factor (GM‐CSF) has shown efficacy in Alzheimer's Disease (AD) and Parkinson's Disease (PD) animal studies and is undergoing clinical evaluation. The likely need for dosing of GM‐CSF to patients over months or years motivates pursuit of avenues for delivering GM‐CSF to circulation via oral administration. Flow cytometric screening of 37 yeast‐displayed GM‐CSF saturation mutant libraries revealed residues P12, H15, R23, R24, and K72 as key determinants of GM‐CSF's CD116 and CD131 GM‐CSF receptor (GM‐CSFR) subunit binding affinity. Screening combinatorial GM‐CSF libraries mutated at positions P12, H15, and R23 yielded variants with increased affinities toward both CD116 and CD131. Genetic fusion of GM‐CSF to human transferrin (Trf), a strategy that enables oral delivery of other biopharmaceuticals in animals, yielded bioactive wild type and variant cytokines upon secretion from cultured Human Embryonic Kidney cells. Surface plasmon resonance (SPR) measurements showed that all evaluated variants possess decreases in CD116 and CD131 binding KD values of up to 2.5‐fold relative to wild type. Improved affinity led to increased in vitro bioactivity; the most bioactive variant, P12D/H15L/R23L, had a leukocyte proliferation assay EC50 value 3.5‐fold lower than the wild type GM‐CSF/Trf fusion. These outcomes are important first steps toward our goal of developing GM‐CSF/Trf fusions as orally available AD and PD therapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:668–677, 2015  相似文献   

5.
Cytokine networks initiated by means of innate immunity are regarded as a major determinant of host defence in response to acute infection by bacteria including Borrelia burgdorferi. Herein, we demonstrate that interferon (IFN)‐α, either endogenously produced after exposure of cells to toll‐like receptor‐9‐activating CpG oligonucleotides or provided as recombinant cytokine, weakens activation of the anti‐bacterial interleukin (IL)‐1/IL‐22 axis in human peripheral blood mononuclear cells exposed to viable B. burgdorferi. As IFN‐α has been related to pathological dissemination of the spirochaete, data suggest an immunoregulatory role of type I IFN in this context that is able to significantly modify cytokine profiles thereby possibly determining early course of B. burgdorferi infection.  相似文献   

6.
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis.  相似文献   

7.
8.
RAW 264.7 macrophage cells differentiate into osteoclast‐like cells in the presence of RANKL. Participation of M‐CSF in RANKL‐induced osteoclast formation of RAW 264.7 cells was examined. TRAP‐positive osteoclast‐like cells appeared in RAW 264.7 cells cultured in the presence of RANKL. RANKL‐induced osteoclast formation was markedly inhibited by anti‐M‐CSF antibody. RANKL augmented M‐CSF mRNA expression and M‐CSF production in RAW 264.7 cells. Further, anti‐M‐CSF antibody inhibited the expression of RANK, c‐fms, c‐fos and TRAP mRNA in RANKL‐stimulated RAW 264.7 cells. However, anti‐M‐CSF antibody did not affect the expression of DC‐STAMP in the stimulated cells. Therefore, RANKL was suggested to induce osteoclast formation in RAW 264.7 cells via augmented production of M‐CSF. The putative role of M‐CSF in RANKL‐induced osteoclast formation of RAW 264.7 cells is discussed.  相似文献   

9.
Epigallocatechin‐3‐O‐gallate (EGCG), derived from green tea, has been studied extensively because of its diverse physiological and pharmacological properties. This study evaluates the protective effect of EGCG on angiotensin II (Ang II)‐induced endoglin expression in vitro and in vivo. Cardiac fibroblasts (CFs) from the thoracic aorta of adult Wistar rats were cultured and induced with Ang II. Western blotting, Northern blotting, real‐time PCR and promoter activity assay were performed. Ang II increased endoglin expression significantly as compared with control cells. The specific extracellular signal‐regulated kinase inhibitor SP600125 (JNK inhibitor), EGCG (100 μM) and c‐Jun N‐terminal kinase (JNK) siRNA attenuated endoglin proteins following Ang II induction. In addition, pre‐treated Ang II‐induced endoglin with EGCG diminished the binding activity of AP‐1 by electrophoretic mobility shift assay. Moreover, the luciferase assay results revealed that EGCG suppressed the endoglin promoter activity in Ang II‐induced CFs by AP‐1 binding. Finally, EGCG and the JNK inhibitor (SP600125) were found to have attenuated endoglin expression significantly in Ang II‐induced CFs, as determined through confocal microscopy. Following in vivo acute myocardial infarction (AMI)‐related myocardial fibrosis study, as well as immunohistochemical and confocal analyses, after treatment with endoglin siRNA and EGCG (50 mg/kg), the area of myocardial fibrosis reduced by 53.4% and 64.5% and attenuated the left ventricular end‐diastolic and systolic dimensions, and friction shortening in hemodynamic monitor. In conclusion, epigallocatechin‐3‐O‐gallate (EGCG) attenuated the endoglin expression and myocardial fibrosis by anti‐inflammatory effect in vitro and in vivo, the novel suppressive effect was mediated through JNK/AP‐1 pathway.  相似文献   

10.
11.
Stroke is a multi‐factorial polygenic disease and is a major cause of death and adult disability. Administration of bone marrow stem cells protects ischemic rat brain by facilitating recovery of neurological functions. But the molecular mechanism of stem cells action and their effect on gene expression is not well explored. In this study, we have transplanted 1 × 106 human bone marrow mesenchymal stem cells (hBMMSCs) in middle cerebral artery occluded (MCAo) adult male Wistar rats through intracarotid artery route at 24 h after surgery. Motor behavioral tests (rotarod and open field) were performed to assess the changes in motor functions at day 0 and day1, 4, 8 and 14. The expression of studied genes at mRNA and protein level was quantified by using Q‐PCR and western blotting, respectively. Further, we have assessed the methylation pattern of promoter of these genes by using methylation‐specific PCR. Data were analyzed statistically and correlated. A significant improvement in behavioral deficits was observed in stem cells treated group after 14th day post stroke. Significantly (p < 0.05) increased mRNA and protein levels of brain derived neurotrophic factor and ANP genes in hBMMSCs treated group along with decrease in methylation level at their promoter was observed. On the other hand, significantly decreased mRNA and protein level of TSP1 and WNK1 in hBMMSCs treated group was observed. In conclusion, hBMMSCs administration significantly improves the behavioral deficits by improving motor and locomotor coordination. The promoter of TSP1 and WNK1 genes was found to be hyper‐methylated in hBMMSCs group resulting in their decreased expression while the promoter of ANP and brain derived neurotrophic factor was found to be hypo‐methylated. This study might shed a light on how hBMMSCs affect the gene expression by modulating methylation status.

  相似文献   

12.
13.
14.
Genetic modification of marrow concentrates may provide convenient approaches to enhance the chondrogenic differentiation processes and improve the repair capacities in sites of cartilage defects following administration in the lesions. Here, we provided clinically adapted recombinant adeno‐associated virus (rAAV) vectors to human bone marrow aspirates to promote the expression of the potent transforming growth factor beta (TGF‐β) as a means to regulate the biological and chondrogenic activities in the samples in vitro. Successful TGF‐β gene transfer and expression via rAAV was reached relative to control (lacZ) treatment (from 511.1 to 16.1 pg rhTGF‐β/mg total proteins after 21 days), allowing to durably enhance the levels of cell proliferation, matrix synthesis, and chondrogenic differentiation. Strikingly, in the conditions applied here, application of the candidate TGF‐β vector was also capable of reducing the hypertrophic and osteogenic differentiation processes in the aspirates, showing the potential benefits of using this particular vector to directly modify marrow concentrates to generate single‐step, effective approaches that aim at improving articular cartilage repair in vivo.  相似文献   

15.
Bile at strongly acidic pH exerts a carcinogenic effect on the hypopharynx, based upon recent pre‐clinical studies that support its role as an independent risk factor. We recently demonstrated in vitro that curcumin can prevent oncogenic profile of bile in human hypopharyngeal cells, by inhibiting NF‐κB. We hypothesize that topically applied curcumin to the hypopharynx can similarly block early oncogenic molecular events of bile, by inhibiting NF‐κB and consequently altering the expression of genes with oncogenic function. Using Mus musculus (C57Bl/6J), we topically applied curcumin (250 μmol/L; three times per day; 10 days) to the hypopharynx, 15 minutes before, 15 minutes after or in combination with bile acids (pH 3.0). Immunohistochemical analysis and qPCR revealed that topically applied curcumin either before, after or in combination with acidic bile exposure significantly suppressed its induced NF‐κB activation in regenerating epithelial cells, and overexpression of Rela, Bcl2, Egfr, Stat3, Wnt5a, Tnf, Il6, Ptgs2. Akt1 was particularly inhibited by curcumin when applied simultaneously with bile. We provide novel evidence into the preventive and therapeutic properties of topically applied curcumin in acidic bile‐induced early oncogenic molecular events in hypopharyngeal mucosa, by inhibiting NF‐κB, and shaping future translational development of effective targeted therapies using topical non‐pharmacologic inhibitors of NF‐κB.  相似文献   

16.
17.
18.
This study was aimed to explore the correlation of intercellular adhesion molecule‐1 (ICAM‐1) K469E and megakaryoblastic leukaemia factor‐1 (MKL‐1) ?184C/T polymorphisms with the susceptibility to coronary heart disease (CHD) in the Chinese Han population. 100 CHD patients and 91 healthy people that had no blood connection with each other were enrolled in this case‐control study. ICAM‐1 and MKL‐1 polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) approach. Multiple logistic regression was used to analyse the correlation between polymorphisms of ICAM‐1 and MKL‐1 and CHD susceptibility. Differences of genotype and allele frequencies of the two SNPs between case and control groups were analysed by chi‐square test. Odds ratios (ORs) and 95% confidence intervals (CIs) were indicated relative susceptibility of CHD. The distributions of ICAM‐1 and MKL‐1 polymorphisms in each group conformed to Hardy‐Weinberg equilibrium (HWE). After adjusting for traditional risk factors, the TT genotype frequency of MKL‐1 ?184C/T polymorphism was found significantly higher in case group than in control group (P < .05). Meanwhile, T allele frequency increased in case group compared with control group, and the differences had statistical significance (P = .04, OR = 2.34, 95% CI = 1.34‐5.26). Logistic regression analysis in this study proved that smoking, hypertension, diabetes and triglyceride (TG) were all risk factors for CHD ICAM‐1 K469E polymorphism has no association with the onset of CHD. But MKL‐1 ?184C/T polymorphism is associated with the risk of CHD and T allele might be a susceptibility factor for CHD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号