共查询到20条相似文献,搜索用时 11 毫秒
1.
Yangyang Cao Ruitang Shi Haoqing Yang Jianpeng Zhang Lihua Ge Runtao Gao Zhipeng Fan 《Cell biology international》2020,44(4):1046-1058
Mesenchymal stem cells (MSCs) exists low efficiency to trans‐differentiate into other germinal layer cell types. One key issue is to discover the effect of important factor on MSCs differentiation abiltiy. In this study, we investigated the role and mechanism of epiregulin (EREG) on the osteogenic differentiation and neurogenic trans‐differentiation in adipose‐derived stem cells (ADSCs). We discovered that the depletion of EREG inhibited the osteogenic differentiation in vitro. And 25 ng/mL recombinant human epiregulin protein (rhEREG) effectively improved the osteogenic differentiation of EREG‐depleted‐ADSCs. Depletion of EREG promoted the formation of neural spheres, and increased the expressions of nestin, βIII‐tubulin, NeuroD, NCAM, TH, and NEF in ADSCs. Then, 25 ng/mL rhEREG significantly inhibited these neurogenic differentiation indicators. Inhibition of p38 MAPK, JNK, or Erk1/2 signaling pathway separately, blocked the rhEREG‐enhanced osteogenic differentiation ability and the rhEREG‐inhibited neurogenic trans‐differentiation ability of ADSCs. In conclusions, EREG promoted the osteogenic differentiation and inhibited the neurogenic trans‐differentiation potentials of ADSCs via MAPK signaling pathways. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
Secreted microvesicular miR‐31 inhibits osteogenic differentiation of mesenchymal stem cells 下载免费PDF全文
Sylvia Weilner Elisabeth Schraml Matthias Wieser Paul Messner Karl Schneider Klemens Wassermann Lucia Micutkova Klaus Fortschegger Andrea B. Maier Rudi Westendorp Heinrich Resch Susanne Wolbank Heinz Redl Pidder Jansen‐Dürr Peter Pietschmann Regina Grillari‐Voglauer Johannes Grillari 《Aging cell》2016,15(4):744-754
Damage to cells and tissues is one of the driving forces of aging and age‐related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self‐renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor‐age‐dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR‐31 as a crucial component. We demonstrated that miR‐31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR‐31 is secreted within senescent cell‐derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled‐3. Therefore, we suggest that microvesicular miR‐31 in the plasma of elderly might play a role in the pathogenesis of age‐related impaired bone formation and that miR‐31 might be a valuable plasma‐based biomarker for aging and for a systemic environment that does not favor cell‐based therapies whenever osteogenesis is a limiting factor. 相似文献
11.
Nai‐Wen Fan Tsung‐Chuan Ho Cheng‐Wen Wu Yeou‐Ping Tsao 《Journal of cellular and molecular medicine》2019,23(7):4759-4769
Expansion of limbal epithelial stem cells (LSCs) is crucial for the success of limbal transplantation. Previous studies showed that pigment epithelium‐derived peptide (PEDF) short peptide 44‐mer could effectively expand LSCs and maintain them in a stem‐cell state, but the mechanism remained unclear. In the current study, we found that pharmacological inhibition of Sonic Hedgehog (SHh) activity reduced the LSC holoclone number and suppressed LSC proliferation in response to 44‐mer. In mice subjected to focal limbal injury, 44‐mer facilitated the restoration of the LSC population in damaged limbus, and such effect was impeded by the SHh or ATGL (a PEDF receptor) inhibitor. Furthermore, we showed that 44‐mer increased nuclear translocation of Gli1 and Gli3 in LSCs. Knockdown of Gli1 or Gli3 suppressed the ability of 44‐mer to induce cyclin D1 expression and LSC proliferation. In addition, ATGL inhibitor suppressed the 44‐mer‐induced phosphorylation of STAT3 at Tyr705 in LSC. Both inhibitors for ATGL and STAT3 attenuated 44‐mer‐induced SHh activation and LSC proliferation. In conclusion, our data demonstrate that SHh‐Gli pathway driven by ATGL/STAT3 signalling accounts for the 44‐mer‐mediated LSC proliferation. 相似文献
12.
13.
14.
15.
16.
Pubin Qiu Wencong Song Zhiwei Niu Yaofu Bai Wei Li Shaohui Pan Sha Peng Jinlian Hua 《Cell biochemistry and function》2013,31(2):159-165
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
Induced pluripotent stem cell‐derived conditional medium promotes Leydig cell anti‐apoptosis and proliferation via autophagy and Wnt/β‐catenin pathway 下载免费PDF全文
Xiaoling Guo Yong Chen Tingting Hong Xianwu Chen Yue Duan Chao Li Renshan Ge 《Journal of cellular and molecular medicine》2018,22(7):3614-3626
Leydig cell transplantation is a better alternative in the treatment of androgen‐deficient males. The main purpose of this study was to investigate the effects of induced pluripotent stem cell‐derived conditioned medium (iPS‐CM) on the anti‐apoptosis, proliferation and function of immature Leydig cells (ILCs), and illuminate the underlying mechanisms. ILCs were exposed to 200 μmol/L hydrogen peroxide (H2O2) for 24 hours with or without iPS‐CM treatments. Cell apoptosis was detected by flow cytometric analysis. Cell proliferation was assessed using cell cycle assays and EdU staining. The steroidogenic enzyme expressions were quantified with Western blotting. The results showed that iPS‐CM significantly reduced H2O2‐induced ILC apoptosis through down‐regulation of autophagic and apoptotic proteins LC3‐I/II, Beclin‐1, P62, P53 and BAX as well as up‐regulation of BCL‐2, which could be inhibited by LY294002 (25 μmol/L). iPS‐CM could also promote ILC proliferation through up‐regulation of β‐catenin and its target proteins cyclin D1, c‐Myc and survivin, but was inhibited by XAV939 (10 μmol/L). The level of bFGF in iPS‐CM was higher than that of DMEM‐LG. Exogenous bFGF (20 ng/mL) or Wnt signalling agonist lithium chloride (LiCl) (20 mmol/L) added into DMEM‐LG could achieve the similar effects of iPS‐CM. Meanwhile, iPS‐CM could improve the medium testosterone levels and up‐regulation of LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and SF‐1 in H2O2‐induced ILCs. In conclusion, iPS‐CM could reduce H2O2‐induced ILC apoptosis through the activation of autophagy, promote proliferation through up‐regulation of Wnt/β‐catenin pathway and enhance testosterone production through increasing steroidogenic enzyme expressions, which might be used in regenerative medicine for future. 相似文献
18.
Guillot PV De Bari C Dell'Accio F Kurata H Polak J Fisk NM 《Differentiation; research in biological diversity》2008,76(9):946-957
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC. 相似文献
19.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis. 相似文献
20.
Shuo Qiu Yunchu Sun Jia Xu Gen Wen Yaling Yu Tianyi Wu Yimin Chai 《Genesis (New York, N.Y. : 2000)》2019,57(9)
We aimed to investigate the potential beneficial effect of ferulic acid (FA) on stemness of human tendon‐derived stem cells (hTSCs) in vitro and to elucidate the underlying molecular mechanism. The self‐renewal ability of hTSCs was evaluated by colony formation and cell proliferation was determined by CCK‐8 kit. Adipogenesis, osteogenesis, and chondrogenesis were determined by Oil Red O, Alizarin Red, and Alcian Blue stainings, respectively. Relative mRNA levels of PPARγ, Col2A1, Acan, Runx2, HIF1α, and EGR1 were measured with real‐time PCR. Protein levels of HIF1α and EGR1 were detected by western blot. Direct binding of HIF1α with EGR1 promoter was analyzed by ChIP assay. Hypoxia‐induced expression of EGR1 was interrogated by luciferase reporter assay. We demonstrated that FA treatment improved both self‐renewal ability and multi‐differentiation potential of hTSCs. FA induced hypoxia which in turn upregulated EGR1 expression via direct association with its hypoxia response element consensus sequence. Furthermore, we showed that both HIF1α and EGR1 were required for the enhancing effects of FA on hTSC self‐renewal and differentiation. We hereby characterize the beneficial effect of FA on the stemness of hTSCs and highlight the critical role of HIF1α‐EGR1 axis in this process. 相似文献