首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient secretagogues activate mitochondria of the pancreatic β‐cell through the provision of substrate, hyperpolarisation of the inner mitochondrial membrane and mitochondrial calcium rises. We report that mitochondrial matrix pH, a parameter not previously studied in the β‐cell, also exerts an important control function in mitochondrial metabolism. During nutrient stimulation matrix pH alkalinises, monitored by the mitochondrial targeted fluorescent pH‐sensitive protein mtAlpHi or 31P‐NMR inorganic phosphate chemical shifts following saturation transfer. Compared with other cell types, the resting mitochondrial pH was surprisingly low, rising from pH 7.25 to 7.7 during nutrient stimulation of rat β‐cells. As cytosolic alkalinisation to the nutrient was of much smaller amplitude, the matrix alkalinisation was accompanied by a pronounced increase of the ΔpH across the inner mitochondrial membrane. Furthermore, matrix alkalinisation closely correlates with the cytosolic ATP net increase, which is also associated with elevated ATP synthesis rates in mitochondria. Preventing ΔpH increases in permeabilised cells abrogated substrate‐driven ATP synthesis. We propose that the mitochondrial pH and ΔpH are key determinants of mitochondrial energy metabolism and metabolite transport important for cell activation.  相似文献   

2.
    
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin‐like growth factor I (IGF‐I) most likely represents the main survival signal during neuronal differentiation. IGF‐I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF‐I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3‐kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110α or β) associated with one of a large family of regulatory subunits (p85α, p85β, p55γ, p55α, and p50α). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55γ regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55γ is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF‐IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39–50, 2001  相似文献   

3.
    
Objective: Obesity is associated with altered glucocorticoid metabolism, which may impact on hypothalamic‐pituitary‐adrenal axis activity. Here we characterize hepatic 5α‐ and 5β‐reductase in obese rats and their responses to insulin sensitization. Research Methods and Procedures: Hepatic A‐ring reductase protein and mRNA were assessed in lean and obese Zucker rats after insulin sensitization with metformin or rosiglitazone (n = 7 to 8/group). Results: Hepatic 5α‐reductase 1 and 5β‐reductase mRNA and protein (p < 0.01) were increased in obese rats. Insulin sensitization ameliorated increased 5α‐reductase 1 mRNA in obese rats (p < 0.01) and partially reversed increased 5β‐reductase activity. Discussion: Hepatic clearance of glucocorticoids by 5α‐ and 5β‐reductase is increased in obese Zucker rats, and this increase in clearance is attenuated by insulin sensitization. This increased hepatic clearance may underpin compensatory activation of the hypothalamic‐pituitary‐adrenal axis in obesity.  相似文献   

4.
    
Recent research has implicated the C‐terminus of G‐protein coupled receptors in key events such as receptor activation and subsequent intracellular sorting, yet obtaining structural information of the entire C‐tail has proven a formidable task. Here, a peptide corresponding to the full‐length C‐tail of the human CB1 receptor (residues 400–472) was expressed in E.coli and purified in a soluble form. Circular dichroism (CD) spectroscopy revealed that the peptide adopts an α‐helical conformation in negatively charged and zwitterionic detergents (48–51% and 36–38%, respectively), whereas it exhibited the CD signature of unordered structure at low concentration in aqueous solution. Interestingly, 27% helicity was displayed at high peptide concentration suggesting that self‐association induces helix formation in the absence of a membrane mimetic. NMR spectroscopy of the doubly labeled (15N‐ and 13C‐) C‐terminus in dodecylphosphocholine (DPC) identified two amphipathic α‐helical domains. The first domain, S401‐F412, corresponds to the helix 8 common to G protein‐coupled receptors while the second domain, A440‐M461, is a newly identified structural motif in the distal region of the carboxyl‐terminus of the receptor. Molecular modeling of the C‐tail in DPC indicates that both helices lie parallel to the plane of the membrane with their hydrophobic and hydrophilic faces poised for critical interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 565–573, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
    
Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*‐nAChR are down‐regulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose–responses and quantitative ligand‐binding autoradiography were used to define nicotine sensitivity of changes in α4β2*‐nAChR and α6β2*‐nAChR expression. α6β2*‐nAChR down‐regulation by chronic nicotine exposure in dopaminergic and optic‐tract nuclei was ≈three‐fold more sensitive than up‐regulation of α4β2*‐nAChR. In contrast, nAChR‐mediated [3H]‐dopamine release from dopamine‐terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR‐mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]‐DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function.

  相似文献   


6.
Spherical three‐dimensional (3D) cellular aggregates are valuable for various applications such as regenerative medicine or cell‐based assays due to their stable and high functionality. However, previous methods to form aggregates have shown drawbacks, being labor‐intensive, showing low productivity per unit area or volume and difficulty to form homogeneous aggregates. We proposed a novel strategy based on oxygen‐permeable polydimethylsiloxane (PDMS) honeycomb microwell sheets, which can theoretically supply about 80 times as much oxygen as conventional polystyrene culture dishes, to produce recoverable aggregates in controllable sizes using mouse insulinoma cells (MIN6‐m9). In 48 hours of culture, the PDMS sheets produced aggregates whose diameters were strictly controlled (?32, 60, 90, 150 and 280 mm) even at an inoculum density eight times higher (8.0×105 cells/cm2) than that of normal confluent monolayers (1.0×105 cells/cm2). Measurement of the oxygen tension near the cell layer and glucose/lactate analysis clearly showed that cells exhibit aerobic respiration on the PDMS‐based culture system. Glucose‐responsive insulin secretion of the recovered aggregates showed that the aggregates around 90 mm in diameter secreted the largest amounts of insulin. This confirmed the advantages of 3D cellular organization and the existence of a suitable aggregate size, above which excess organization leads to a decreased metabolic response. These results demonstrated that this microwell‐based PDMS culture system provides a promising method to form size‐regulated and better functioning 3D cellular aggregates of various kinds of cells with a high yield per surface area. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:178–187, 2014  相似文献   

7.
    
The activity of interferon‐γ (IFN‐γ) relies on signal transduction, which is triggered by combination with the receptors interferon‐γ receptor α chain (IFNGR1) and β chain (IFNGR2). Native recombinant chicken IFNGR1 (chIFNGR1; residues 25–237) was overexpressed in Escherichia coli, purified by refolding and crystallized using the vapour‐diffusion technique. The crystals belonged to space group P6522, with unit‐cell parameters a = b = 64.1, c = 216.3 Å, α = β = 90, γ = 120°. The Matthews coefficient and solvent content were calculated as 2.67 Å3 Da−1 and 53.97%, respectively. X‐ray diffraction data for chIFNGR1 were collected to 2.0 Å resolution at a synchrotron source.  相似文献   

8.
9.
    
TTHA0281 is a hypothetical protein from Thermus thermophilus HB8 that belongs to an uncharacterized protein family, UPF0150, in the Pfam database and to COG1598 in the National Center for Biotechnology Information Database of Clusters of Orthologous Groups. The X‐ray crystal structure of the protein was determined by a multiple‐wavelength anomalous dispersion technique and was refined at 1.9 Å resolution to a final R factor of 18.5%. The TTHA0281 monomer adopts an α‐β‐β‐β‐α fold and forms a homotetramer. Based on the properties and functions of structural homologues of the TTHA0281 monomer, the TTHA0281 protein is speculated to be involved in RNA metabolism, including RNA binding and cleavage.  相似文献   

10.
    
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

11.
Vivek Malhotra 《The EMBO journal》2013,32(12):1660-1664
The process by which proteins are secreted without entering the classical endoplasmic reticulum (ER)–Golgi complex pathway, in eukaryotic cells, is conveniently called unconventional protein secretion. Recent studies on one such protein called Acb1 have revealed a number of components involved in its secretion. Interestingly, conditions that promote the secretion of Acb1 trigger the biogenesis of a new compartment called CUPS (Compartment for Unconventional Protein Secretion). CUPS form near the ER exit site but lack ER‐specific proteins. Other proteins that share some of the features common with the secretion of Acb1 are interleukin‐1β and tissue transglutaminase. Here I will review recent advances made in the field and propose a new model for unconventional protein secretion.  相似文献   

12.
    
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
    
The conformational characteristics of protected homo‐oligomeric Boc‐[β3(R)Val]n‐OMe, n = 1, 2, 3, 4, 6, 9, and 12 have been investigated in organic solvents using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) absorption spectroscopy and circular dichroism (CD) methods. The detailed 1H NMR analysis of Boc‐[β3(R)Val]12‐OMe reveals that the peptide aggregates extensively in CDCl3, but is disaggregated in 20%, (v/v) dimethyl sulfoxide (DMSO) in CDCl3 and in CD3OH. Limited assignment of the N‐terminus NH groups, together with solvent dependence of NH chemical shifts and temperature coefficients provides evidence for 14‐helix conformation in the 12‐residue peptide. FTIR analysis in CHCl3 establishes that the onset of folding and aggregation, as evidenced by NH stretching bands at 3375 cm−1 (intramolecular) and 3285 cm−1 (intermolecular), begins at the level of the tetrapeptide. The observed CD bands, 214 nm (negative) and 198 nm (positive), support 14‐helix formation in the 9 and 12 residue sequences. The folding and aggregation tendencies of homo‐oligomeric α‐, β‐, and γ‐ residues is compared in the model peptides Boc‐[ωVal]n‐NHMe, ω = α, β, and γ and n = 1, 2, and 3. Analysis of the FTIR spectra in CHCl3, establish that the tendency to aggregate at the di and tripeptide level follows the order β > α∼γ, while the tendency to fold follows the order γ > β > α.  相似文献   

14.
    
The enzyme 11β‐hydroxysteroid dehydrogenase 1 (11β‐HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin‐induced glucose. This was corroborated by the application of 11β‐HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU‐486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β‐HSD1 might be a promising way to improve impaired insulin‐stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
    
The hyperthermophilic crenarchaeon Ignicoccus hospitalis KIN4/I possesses at least 35 putative genes encoding enzymes that belong to the α/β‐hydrolase superfamily. One of those genes, the metallo‐hydrolase‐encoding igni18, was cloned and heterologously expressed in Pichia pastoris. The enzyme produced was purified in its catalytically active form. The recombinant enzyme was successfully crystallized and the crystal diffracted to a resolution of 2.3 Å. The crystal belonged to space group R32, with unit‐cell parameters a = b = 67.42, c = 253.77 Å, α = β = 90.0, γ = 120.0°. It is suggested that it contains one monomer of Igni18 within the asymmetric unit.  相似文献   

17.
    
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
    
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

19.
20.
Oligomeric amyloid‐β (Aβ) 1‐42 disrupts synaptic function at an early stage of Alzheimer's disease (AD). Multiple posttranslational modifications of Aβ have been identified, among which N‐terminally truncated forms are the most abundant. It is not clear, however, whether modified species can induce synaptic dysfunction on their own and how altered biochemical properties can contribute to the synaptotoxic mechanisms. Here, we show that a prominent isoform, pyroglutamated Aβ3(pE)‐42, induces synaptic dysfunction to a similar extent like Aβ1‐42 but by clearly different mechanisms. In contrast to Aβ1‐42, Aβ3(pE)‐42 does not directly associate with synaptic membranes or the prion protein but is instead taken up by astrocytes and potently induces glial release of the proinflammatory cytokine TNFα. Moreover, Aβ3(pE)‐42‐induced synaptic dysfunction is not related to NMDAR signalling and Aβ3(pE)‐42‐induced impairment of synaptic plasticity cannot be rescued by D1‐agonists. Collectively, the data point to a scenario where neuroinflammatory processes together with direct synaptotoxic effects are caused by posttranslational modification of soluble oligomeric Aβ and contribute synergistically to the onset of synaptic dysfunction in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号