首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sphingosine‐1‐phosphate (S1P) receptor modulator, fingolimod (FTY720), has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular (AV) conduction block have been reported in some patients after the first dose. The underlying mechanism of this AV node conduction blockade is still not well‐understood. In this study, we hypothesize that expression of this particular arrhythmia might be related to a direct effect of FTY720 on AV node rather than a parasympathetic mimetic action. We, therefore, investigated the effect of FTY720 on AV nodal, using in vitro rat model preparation, under both basal as well as ischaemia/reperfusion conditions. We first look at the expression pattern of S1P receptors on the AV node using real‐time PCR. Although all three S1P receptor isoforms were expressed in AVN tissues, S1P1 receptor isoform expression level was higher than S1P2 and S1P3. The effect of 25 nM FTY720 on cycle length (CL) was subsequently studied via extracellular potentials recordings. FTY720 caused a mild to moderate prolongation in CL by an average 9% in AVN (n = 10, P < 0.05) preparations. We also show that FTY720 attenuated both ischaemia and reperfusion induced AVN rhythmic disturbance. To our knowledge, these remarkable findings have not been previously reported in the literature, and stress the importance for extensive monitoring period in certain cases, especially in patients taking concurrently AV node blocker agents.  相似文献   

2.
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non‐muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM‐A/B) and myosin light chain 17 isoforms (LC17a/b), and isoform ratios were determined via competitive RT‐PCR. SM MHC and NM MHC isoforms (NMMHC‐A, NMMHC‐B and NMMHC‐C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM‐A/SM‐B at the mRNA level. Meanwhile, isoforms of NMMHC‐A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC‐A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre‐contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.  相似文献   

3.
Pancreatic cancer is a highly aggressive malignancy with limited treatment options. Type‐I interferons (e.g. IFN‐α/‐β) have several anti‐tumour activities. Over the past few years, clinical studies evaluating the effect of adjuvant IFN‐α therapy in pancreatic cancer yielded equivocal results. Although IFN‐α and ‐β act via the type‐I IFN receptor, the role of the number of receptors present on tumour cells is still unknown. Therefore, this study associated, for the first time, in a large panel of pancreatic cancer cell lines the effects of IFN‐α/‐β with the expression of type‐I IFN receptors. The anti‐tumour effects of IFN‐α or IFN‐β on cell proliferation and apoptosis were evaluated in 11 human pancreatic cell lines. Type‐I IFN receptor expression was determined on both the mRNA and protein level. After 7 days of incubation, IFN‐α significantly reduced cell growth in eight cell lines by 5–67%. IFN‐β inhibited cell growth statistically significant in all cell lines by 43–100%. After 3 days of treatment, IFN‐β induced significantly more apoptosis than IFN‐α. The cell lines variably expressed the type‐I IFN receptor. The maximal inhibitory effect of IFN‐α was positively correlated with the IFNAR‐1 mRNA (P < 0.05, r = 0.63), IFNAR‐2c mRNA (P < 0.05, r = 0.69) and protein expression (P < 0.05, r = 0.65). Human pancreatic cancer cell lines variably respond to IFN‐α and ‐β. The expression level of the type‐I IFN receptor is of predictive value for the direct anti‐tumour effects of IFN‐α treatment. More importantly, IFN‐β induces anti‐tumour effects already at much lower concentrations, is less dependent on interferon receptor expression and seems, therefore, more promising than IFN‐α.  相似文献   

4.
While the transforming growth factor‐β1 (TGF‐β1) regulates the growth and proliferation of pancreatic β‐cells, its receptors trigger the activation of Smad network and subsequently induce the insulin resistance. A case‐control was conducted to evaluate the associations of the polymorphisms of TGF‐β1 receptor‐associated protein 1 (TGFBRAP1) and TGF‐β1 receptor 2 (TGFBR2) with type 2 diabetes mellitus (T2DM), and its genetic effects on diabetes‐related miRNA expression. miRNA microarray chip was used to screen T2DM‐related miRNA and 15 differential expressed miRNAs were further validated in 75 T2DM and 75 normal glucose tolerance (NGT). The variation of rs2241797 (T/C) at TGFBRAP1 showed significant association with T2DM in case‐control study, and the OR (95% CI) of dominant model for cumulative effects was 1.204 (1.060‐1.370), Bonferroni corrected P < 0.05. Significant differences in the fast glucose and HOMA‐β indices were observed amongst the genotypes of rs2241797. The expression of has‐miR‐30b‐5p and has‐miR‐93‐5p was linearly increased across TT, TC, and CC genotypes of rs2241797 in NGT, Ptrend values were 0.024 and 0.016, respectively. Our findings suggest that genetic polymorphisms of TGFBRAP1 may contribute to the genetic susceptibility of T2DM by mediating diabetes‐related miRNA expression.  相似文献   

5.
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine‐87‐threonine (A87T) polymorphism has been suggested to affect immune‐system functions. We investigated receptor functionality of the P2Y11A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3′‐O‐(4‐benzoylbenzoyl)adenosine 5′‐triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co‐transfected with P2Y11A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor‐specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1–P2Y11 receptor interaction. We additionally investigated alanine‐87‐serine and alanine‐87‐tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid‐87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11A87T receptor shows complete loss of nucleotide‐induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T‐mutated receptors when co‐operating with P2Y1 receptors.

  相似文献   


6.
7.
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol‐3‐phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P‐binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P‐binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P‐binding site, or by a secreted PI4P‐binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P‐binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P‐binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.  相似文献   

8.
Estrogen‐induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase‐1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol‐induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down‐regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up‐regulated Mrp3 (348%, P ≤ 0.05). Heme pre‐treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up‐regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol‐treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme‐induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up‐regulation (Mrp2/Mrp4) or down‐regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2‐dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol‐induced cholestasis.  相似文献   

9.
The purpose of this study was to determine the correlation between over‐expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio‐sensitivity of non‐small cell lung carcinoma (NSCLC) cells. 3‐[4,5‐dimethylthylthiazol‐2‐yl]‐2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V‐Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X‐ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF‐κB. Finally, to examine the effect of shNRP1 on proliferation and radio‐sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1‐A549) showed a significant reduction in colony‐forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA‐mediated NRP1 inhibition also significantly enhanced the radio‐sensitivity of NSCLC cells both in vitro and in vivo. The over‐expression of NRP1 was correlated with growth, survival and radio‐resistance of NSCLC cells via the VEGF‐PI3K‐ NF‐κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio‐sensitization of NSCLC.  相似文献   

10.
Background: Helicobacter pylori infection is associated with development of chronic inflammation and infiltration of immune cells into the gastric mucosa. As unconventional T‐lymphocytes expressing natural killer cell receptors are considered to play central roles in the immune response against infection, a study investigating their frequencies in normal and H. pylori‐infected gastric mucosa was undertaken. Materials and Methods: Flow cytometry was used to quantify T‐cells expressing the natural killer cell markers CD161, CD56, and CD94 in freshly isolated lymphocytes from the epithelial and lamina propria layers of gastric mucosa. Thirteen H. pylori‐positive and 24 H. pylori‐negative individuals were studied. Results: CD94+ T‐cells were the most abundant (up to 40%) natural killer receptor‐positive T‐cell population in epithelial and lamina propria layers of H. pylori‐negative gastric mucosa. CD161+ T‐cells accounted for about one‐third of all T‐cells in both compartments, but the lowest proportion were of CD56+ T‐cells. Compared with H. pylori‐negative mucosa, in H. pylori‐infected mucosa the numbers of CD161+ T‐cells were significantly greater (p = .04) in the epithelium, whereas the numbers of CD56+ T‐cells were lower (p = .01) in the lamina propria. A minor population (< 2%) of T‐cells in both mucosal layers of H. pylori‐negative subjects were natural killer T‐cells, and whose proportions were not significantly different (p > .05) to those in H. pylori‐infected individuals. Conclusions: The predominance, heterogeneity, and distribution of natural killer cell receptor‐positive T‐cells at different locations within the gastric mucosa reflects a potential functional role during H. pylori infection and warrants further investigation.  相似文献   

11.
Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ‐ (KOP), μ‐opioid (MOP) and nociceptin/opioid receptor‐like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell model by expressing human KOP, MOP and NOP receptors individually or simultaneously (KOP, KOP+MOP, KOP+NOP and KOP+MOP+NOP). Radioligand binding with tritium‐labelled diprenorphine confirmed the expression of KOP receptors. Immunoblotting and immunocytochemistry indicated that the expressed KOP, MOP and NOP receptors are N‐linked glycoproteins and colocalized in cytoplasmic compartments. Acute application of the opioid receptor agonists— U‐69593, DAMGO and nociceptin— inhibited adenylate cyclase (AC) activity in cells expressing KOP, MOP and NOP receptors respectively. Buprenorphine, when applied acutely, inhibited AC activity to ~90% in cells expressing KOP+MOP+NOP receptors. Chronic exposure to buprenorphine induced concentration‐dependent AC superactivation in cells expressing KOP+NOP receptors, and the level of this superactivation was even higher in KOP+MOP+NOP‐expressing cells. Our study demonstrated that MOP receptor could enhance AC regulation in the presence of coexpressed KOP and NOP receptors, and NOP receptor is essential for concentration‐dependent AC superactivation elicited by chronic buprenorphine exposure.  相似文献   

12.
Targeting the sphingosine 1‐phosphate (S1P)/S1P receptor (S1PR) signalling axis is emerging as a promising strategy in the treatment of cancer. However, the effect of such an approach on survival of human melanoma cells remains less understood. Here, we show that the sphingosine analogue FTY720 that functionally antagonises S1PRs kills human melanoma cells through a mechanism involving the vacuolar H+‐ATPase activity. Moreover, we demonstrate that FTY720‐triggered cell death is characterized by features of necrosis and is not dependent on receptor‐interacting protein kinase 1 or lysosome cathepsins, nor was it associated with the activation of protein phosphatase 2A. Instead, it is mediated by increased production of reactive oxygen species and is antagonized by activation of autophagy. Collectively, these results suggest that FTY720 and its analogues are promising candidates for further development as new therapeutic agents in the treatment of melanoma.  相似文献   

13.
RIC‐3 enhances the functional expression of certain nicotinic acetylcholine receptors (nAChRs) in vertebrates and invertebrates and increases the availability of functional receptors in cultured cells and Xenopus laevis oocytes. Maximal activity of RIC‐3 may be cell‐type dependent, so neither mammalian nor invertebrate proteins is optimal in amphibian oocytes. We cloned the X. laevis ric‐3 cDNA and tested the frog protein in oocyte expression studies. X. laevis RIC‐3 shares 52% amino acid identity with human RIC‐3 and only 17% with that of Caenorhabditis elegans. We used the C. elegans nicotinic receptor, ACR‐16, to compare the ability of RIC‐3 from three species to enhance receptor expression. In the absence of RIC‐3, the proportion of oocytes expressing detectable nAChRs was greatly reduced. Varying the ratio of acr‐16 to X. laevis ric‐3 cRNAs injected into oocytes had little impact on the total cell current. When X. laevis, human or C. elegans ric‐3 cRNAs were co‐injected with acr‐16 cRNA (1 : 1 ratio), 100 μM acetylcholine induced larger currents in oocytes expressing X. laevis RIC‐3 compared with its orthologues. This provides further evidence for a species‐specific component of RIC‐3 activity, and suggests that X. laevis RIC‐3 is useful for enhancing the expression of invertebrate nAChRs in X. laevis oocytes.  相似文献   

14.
15.
Periodontal disease destroys the tooth‐supporting tissues as a result of chronic inflammation elicited by bacterial accumulation on tooth surfaces. Porphyromonas gingivalis is a major periodontal pathogen, with a significant capacity to perturb connective tissue homeostasis and immune responses in the periodontium, attributed to its virulence factors, including a group of secreted cysteine proteases (gingipains). PAR‐2 (protease‐activated receptor‐2) is a G‐protein‐coupled receptor activated upon proteolytic cleavage, mediating intracellular signalling events related to infection and inflammation, such as cytokine production. GF (gingival fibroblasts) and T cells have central roles in periodontal inflammation, which can potentially be mediated by PAR‐2. The aims of this study were to investigate the effects of P. gingivalis on PAR‐2 gene expression in human GF and Jurkat T cells, using quantitative real‐time PCR, and to evaluate the involvement of gingipains. After 6 h of challenge with ascending concentrations of P. gingivalis, PAR‐2 expression was up‐regulated in both cell types by approximately 5‐fold, compared with the control. The P. gingivalis concentration required for maximal PAR‐2 induction was 4‐fold greater in GF than Jurkat T cells. Heat inactivation or chemical inhibition of cysteine proteases abolished the capacity of P. gingivalis to induce PAR‐2 expression in Jurkat T cells. In conclusion, P. gingivalis can induce PAR‐2 expression in GF and Jurkat T cells, potentially attributed to its gingipains. These findings denote that P. gingivalis may perturb the host immune and inflammatory responses by enhancing PAR‐2 expression, thus contributing to the pathogenesis of periodontal disease.  相似文献   

16.
Aims: The objective of this study was to demonstrate that fish‐processing by‐products could be used as sole raw material to sustain the growth of Staphylococcus xylosus for lipase production. Methods and Results: Bacterial growth was tested on supernatants generated by boiling (100°C for 20 min) of tuna, sardine, cuttlefish and shrimp by‐products from fish processing industries. Among all samples tested, only supernatants generated from shrimp and cuttlefish by‐products sustained the growth of S. xylosus. Shrimp‐based medium gave the highest growth (A600 = 22) after 22 h of culture and exhibited the maximum lipase activity (28 U ml?1). This effect may be explained by better availability of nutrients, especially, in shrimp by‐products. Standard medium (SM) amendments to sardine and tuna by‐product‐based media stimulated the growth of S. xylosus and the highest A600 values were obtained with 75% SM. Lipase activity, however, remained below 4 U ml?1 for both sardine and tuna by‐product‐based media. Conclusions: Fish by‐products could be used for the production of highly valuable enzymes. Significance and Impact of the Study: The use of fish by‐products in producing S. xylosus‐growth media can reduce environmental problems associated with waste disposal and, simultaneously, lower the cost of biomass and enzyme production.  相似文献   

17.
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3−/− and caspase−/− mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM–10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA- and ETB-mediated activation of NLRP3 in mouse CC via Ca2+-dependent ROS generation.  相似文献   

18.
19.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

20.
During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occur s , which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin‐3‐gallate (EGCG) on the TxA2 mimetic, U46619‐induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p38MAPK, NF‐κB and MMP‐2 significantly inhibit U46619‐induced cell proliferation. EGCG markedly abrogate U46619‐induced p38MAPK phosphorylation, NF‐κB activation, proMMP‐2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619‐induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP‐2 markedly abrogate U46619‐induced SMase activity and S1P level. EGCG markedly inhibit U46619‐induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline–Ceramide–Sphingosine‐1‐phosphate (Spm–Cer–S1P) signalling axis plays an important role in MMP‐2 mediated U46619‐induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP‐2 activation by modulating p38MAPK–NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号