首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Impairment of cardiac function causes renal damage. Renal failure after heart failure is attributed to hemodynamic derangement including reduced renal perfusion and increased venous pressure. One mechanism involves apoptosis and is defined as cardiorenal syndrome type 1. Erythropoietin (EPO) is a cytokine that induces erythropoiesis under hypoxic conditions. Hypoxia inducible factor 1 alpha (HIF-1α) plays a regulatory role in cellular response to hypoxia. Protective effects of EPO on heart, kidney and nervous system are unrelated to red blood cell production. We investigated early changes in and effects of EPO on renal tissues of rats with myocardial infarction by morphology and immunohistochemistry. Coronary artery ligation was used to induce myocardial infarction in Wistar rats. Group 1 comprised sham operated rats; groups 2, 3 and 4 included rats after coronary artery ligation that were sacrificed 6 h after ligation and that were treated with saline, 5,000 U/kg EPO or 10,000 U/kg EPO, respectively; group 5 included rats sacrificed 1 h after ligation. Group 2 showed increased renal tubule damage. Significantly less tubule damage was observed in EPO treated groups. EPO and EPO receptor (EPO-R) immunostaining intensities increased slightly for group 5 and became more intense for group 2. EPO and EPO-R immunostaining was observed in the interstitial area, glomerular cells and tubule epithelial cells of EPO treated groups. HIF-1α immunostaining was observed in collecting tubules in the medulla only in group 2. Caspase-3 immunostaining is an indicator of apoptosis. Caspase-3 staining intensity decreased in renal medulla of EPO treated groups. EPO treatment may exert a protective effect on the renal tissues of patients with cardiorenal syndrome.  相似文献   

2.
《Epigenetics》2013,8(3):366-376
Genetic risk factors for chronic kidney disease (CKD) are being identified through international collaborations. By comparison, epigenetic risk factors for CKD have only recently been considered using population-based approaches. DNA methylation is a major epigenetic modification that is associated with complex diseases, so we investigated methylome-wide loci for association with CKD. A total of 485,577 unique features were evaluated in 255 individuals with CKD (cases) and 152 individuals without evidence of renal disease (controls). Following stringent quality control, raw data were quantile normalized and β values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls with resultant P values adjusted for multiple testing. Genes with significantly increased and decreased levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways in Partek Genomics Suite. Twenty-three genes, where more than one CpG per loci was identified with Padjusted < 10?8, demonstrated significant methylation changes associated with CKD and additional support for these associated loci was sought from published literature. Strong biological candidates for CKD that showed statistically significant differential methylation include CUX1, ELMO1, FKBP5, INHBA-AS1, PTPRN2, and PRKAG2 genes; several genes are differentially methylated in kidney tissue and RNA-seq supports a functional role for differential methylation in ELMO1 and PRKAG2 genes. This study reports the largest, most comprehensive, genome-wide quantitative evaluation of DNA methylation for association with CKD. Evidence confirming methylation sites influence development of CKD would stimulate research to identify epigenetic therapies that might be clinically useful for CKD.  相似文献   

3.
Genetic risk factors for chronic kidney disease (CKD) are being identified through international collaborations. By comparison, epigenetic risk factors for CKD have only recently been considered using population-based approaches. DNA methylation is a major epigenetic modification that is associated with complex diseases, so we investigated methylome-wide loci for association with CKD. A total of 485,577 unique features were evaluated in 255 individuals with CKD (cases) and 152 individuals without evidence of renal disease (controls). Following stringent quality control, raw data were quantile normalized and β values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls with resultant P values adjusted for multiple testing. Genes with significantly increased and decreased levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways in Partek Genomics Suite. Twenty-three genes, where more than one CpG per loci was identified with Padjusted < 10−8, demonstrated significant methylation changes associated with CKD and additional support for these associated loci was sought from published literature. Strong biological candidates for CKD that showed statistically significant differential methylation include CUX1, ELMO1, FKBP5, INHBA-AS1, PTPRN2, and PRKAG2 genes; several genes are differentially methylated in kidney tissue and RNA-seq supports a functional role for differential methylation in ELMO1 and PRKAG2 genes. This study reports the largest, most comprehensive, genome-wide quantitative evaluation of DNA methylation for association with CKD. Evidence confirming methylation sites influence development of CKD would stimulate research to identify epigenetic therapies that might be clinically useful for CKD.  相似文献   

4.
Abstract

Background: Renalase is kidney-derived molecule initially considered as catecholamine-inactivating enzyme. However, recent studies suggest that renalase exerts potent cardio- and nephroprotective actions, not related to its enzymatic activity.

Purpose: To assess renalase level in children with chronic kidney disease (CKD).

Material and methods: Serum renalase, BMI, arterial stiffness, peripheral and central blood pressure, intima-media thickness (IMT), medications, and biochemical parameters were analyzed in 38 children with CKD (12.23?±?4.19?years) (stage G2-5). Control group consisted of 38 healthy children.

Results: In the study group, GFR was 25.74?±?8.94?mL/min/1.73 m2; 6 children were dialyzed; 26 had arterial hypertension. Renalase level was higher in the study group compared to control group (p?<?0.001). In CKD children renalase correlated (p?<?0.05) with BMI Z-score (r?=?–0.36), alfacalcidol dose (r?=?0.41), GFR (r?=?–0.69), hemoglobin (r?=?–0.48), total cholesterol (r?=?0.35), LDL-cholesterol (r?=?0.36), triglycerides (r?=?0.52), phosphate (r?=?0.35), calcium-phosphorus product (r?=?0.35), parathormone (r?=?0.58), and pulse wave velocity Z-score (r?=?0.42). In multivariate analysis GFR (β?=?–0.63, p?<?0.001), triglycerides (β?=?0.59, p?=?0.002), and alfacalcidol dose (β?=?–0.49, p?=?0.010) were determinants of renalase.

Conclusions: In children with CKD there is a strong correlation between renalase level and CKD stage. Furthermore, in these patients renalase does not correlate with blood pressure but may be a marker of arterial stiffness.  相似文献   

5.
Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo-3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB-Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.  相似文献   

6.
ObjectivesInsulin resistance in chronic kidney disease (CKD) stimulates muscle wasting, but the molecular processes behind the resistance are undetermined. However, inflammation in skeletal muscle is implicated in the pathogenesis of insulin resistance and cachexia. Toll‐like receptors (TLRs) are known to regulate local innate immune responses, and microarray data have shown that Tlr13 is upregulated in the muscles of mice with CKD, but the relevance is unknown.Materials and MethodsWe performed in vitro experiments in C2C12 myotubes and constructed a CKD murine model using subtotal nephrectomy to conduct experiments in vivo.Results Tlr13 expression was stimulated in C2C12 myotubes treated with uremic serum. The expression of Tlr13 was also upregulated in the tibialis anterior muscles of mice with CKD. Tlr13 knockdown with siRNAs in skeletal muscle cells decreased insulin resistance despite the inclusion of uremic serum. This led to increased levels of p‐AKT and suppression of protein degradation. Using immunofluorescence staining and coimmunoprecipitation assay, we found that TLR13 recruits IRF3, which activates Irf3 expression, resulting in decreased AKT activity. Moreover, insulin resistance and proteolysis are re‐induced by Irf3 overexpression under Tlr13 deletion.ConclusionsOur results indicate that TLR13 is involved in CKD‐mediated insulin resistance in muscle. In catabolic conditions where insulin signaling is impaired, targeting TLR13 may improve insulin sensitivity and prevent muscle atrophy.  相似文献   

7.
Acute kidney disease (AKI) leads to increased risk of progression to chronic kidney disease (CKD). Antithrombin III (ATIII) is a potent anticoagulant with anti‐inflammatory properties, and we previously reported that insufficiencies of ATIII exacerbated renal ischaemia‐reperfusion injury (IRI) in rats. In this study, we examined the characteristic of AKI‐CKD transition in rats with two distinct AKI models. Based on our observation, left IRI plus right nephrectomy (NX‐IRI) was used to determine whether ATIII had therapeutic effects in preventing CKD progression after AKI. It was observed that NX‐IRI resulted in significant functional and histological damage at 5 weeks after NX‐IRI compared with sham rats, which was mitigated by ATIII administration. Besides, we noticed that ATIII administration significantly reduced NX‐IRI‐induced interstitial fibrosis. Consistently, renal expression of collagen‐1, α‐smooth muscle actin and fibronectin were substantial diminished in ATIII‐administered rats compared with un‐treated NX‐IRI rats. Furthermore, the beneficial effects of ATIII were accompanied with decreased M1‐like macrophage recruitment and down‐regulation of M1‐like macrophage‐dependent pro‐inflammatory cytokines such as tumour necrosis factor α, inducible nitric oxide synthase and interleukin‐1β, indicating that ATIII prevented AKI‐CKD transition via inhibiting inflammation. Overall, ATIII shows potential as a therapeutic strategy for the prevention of CKD progression after AKI.  相似文献   

8.
《Cell metabolism》2022,34(2):299-316.e6
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

9.
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health concerns with increasing rates in morbidity and mortality. Transition from AKI-to-CKD is common and requires awareness in the management of AKI survivors. AKI-to-CKD transition is a main risk factor for the development of cardiovascular disease and progression to end-stage kidney disease. The mechanisms driving AKI-to-CKD transition are being explored to identify potential molecular and cellular targets for renoprotective drug interventions. Endoplasmic reticulum (ER) stress and autophagy are involved in the process of AKI-to-CKD transition. Excessive ER stress results in the persistent activation of unfolded protein response, which is an underneath cause of kidney cell death. Moreover, ER stress modulates autophagy and vice-versa. Autophagy is a degradation defensive mechanism protecting cells from malfunction. However, the underlying pathological mechanism involved in this interplay in the context of AKI-to-CKD transition is still unclear. In this review, we discuss the crosstalk between ER stress and autophagy in AKI, AKI-to-CKD transition, and CKD progression. In addition, we explore possible therapeutic targets that can regulate ER stress and autophagy to prevent AKI-to-CKD transition to improve the long-term prognosis of AKI survivors.  相似文献   

10.
Intermittent hypobaric hypoxia (IHH) has been the focus of important research in cardioprotection, and it has been associated with several mechanisms. Intermittent hypobaric hypoxia inhibits prolyl hydroxylases (PHD) activity, increasing the stabilization of hypoxia-inducible factor-1 (HIF-1) and activating crucial adaptative genes. It has been hence suggested that IHH might be a simple intervention, which may offer a thoughtful benefits to patients with acute myocardial infarction and no complications. Nevertheless, several doubts exist as to whether IHH is a really safe technique, with little to no complications in post-myocardial infarction patients. Intermittent hypobaric hypoxia might produce instead unfavourable changes such as impairment of vascular hemodynamics and hypertensive response, increased risk of hemoconcentration and thrombosis, cardiac rhythm perturbations, coronary artery disease and heart failure, insulin resistance, steatohepatitis and even high-altitude pulmonary oedema in susceptible or nonacclimatized patients. Although intermittent and chronic exposures seem effective in cardioprotection, IHH safety issues have been mostly overlooked, so that assorted concerns should be raised about the opportunity to use IHH in the post-myocardial infarction period. Several IHH protocols used in some studies were also aggressive, which would hamper their widespread introduction within the clinical practice. As such, further research is needed before IHH can be widely advocated in myocardial infarction prevention and recovery.  相似文献   

11.
12.
Background: Proenkephalin (pro-ENK) was recently found to be associated with low estimated glomerular filtration rate (eGFR). The association of pro-ENK with urinary albumin excretion (UAE), another marker for chronic kidney disease (CKD), has not been investigated. We examined the association of pro-ENK with eGFR and UAE as markers of CKD.

Methods: We included 4375 subjects of the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. CKDeGFR was defined as development of eGFR?<60?ml/min/1.73 m2 and CKDUAE as albuminuria?>30?mg/24?h.

Results: Baseline median pro-ENK was 52.2 (IQR: 44.9–60.5) pmol/L. After a median follow-up of 8.4 (IQR: 7.9–8.9) years, 183 subjects developed CKDeGFR and 371 developed CKDUAE. The association of pro-ENK with CKDeGFR was modified by sex (Pinteraction?SD increase in 10log-transformed pro-ENK, 1.65; 95% CI: 1.15–2.36) and not in women (0.83; 0.58–1.20). No significant association was observed between pro-ENK and CKDUAE risk (0.83; 0.58–1.20).

Conclusions: High pro-ENK is associated with increased risk of CKDeGFR in men, but not in women. No association of pro-ENK with CKDUAE was observed. These results should be interpreted with caution, since residual confounding and potential overfitting of models could have influenced the results.  相似文献   

13.
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD.  相似文献   

14.
15.
This study tested the hypothesis that therapy with double overexpression of miR-19a-3p and miR-20a-5p (miRDOE) to human inducible pluripotent stem cell–derived mesenchymal stem cells (iPS-MSCs) was superior to iPS-MSCs alone for preserving renal function in rat with pre-existing chronic kidney disease (CKD), followed by ischaemia-reperfusion (IR) injury. In vitro study demonstrated that the protein expressions of oxidative stress (NOX-1/NOX-2/NOX4/oxidized protein/p22phox), inflammatory downstream signalling (TLR2&4/MyD88/TRAF6/IKK-ß/p-NFκB/IL-1ß/IL-6/MMP-9) and cell apoptosis/death signalling (cleaved caspase-3/mitochondrial Bax/p-ERKs/p-JNK/p-p38) at time-points of 24-hour/48-hour cell cultures were significantly increased in p-Cresol-treated NRK-52E cells than in the control that was significantly reversed by miR-19a-3p-transfected iPS-MSC (all P < .001). Animals were categorized into group 1 (sham-operated control), group 2 (CKD-IR), group 3 (CKD-IR + oligo-miRDOE of iPS-MSCs/6.0 ×105/intra-renal artery transfusion/3 hours after IR procedure), group 4 (CKD-IR + iPS-MSCs) and group 5 (CKD-IR + miRDOE of iPS-MSCs/6.0 ×105/intra-renal artery transfusion/3 hour after IR procedure). By day 35, the creatinine/BUN levels were lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3 and 4 (all P < .0001) but they showed no difference between the latter two groups. The protein expressions of oxidative stress, inflammatory downstream signalling and cell apoptosis/death signalling exhibited an identical pattern of creatinine level among the five groups (all P < .00001). Also, the microscopic findings demonstrated that the kidney injury score/fibrotic area/number of inflammatory cells (CD14+/CD68+) exhibited an identical pattern of creatine level (all P < .0001). The miRDOE of iPS-MSCs was superior to iPS-MSCs for preserving the residual kidney function and architecture in CKD-IR rat.  相似文献   

16.
The glycoprotein hormone Erythropoietin (EPO) stimulates red cell production and maturation. EPO is produced by the kidneys and the fetal liver in response to hypoxia (HOX). Recently, EPO expression has also been observed in the central nervous system where it may be neuroprotective. It remained unclear, however, whether EPO is expressed in the peripheral nervous system and, if so, whether a neuronal phenotype is required for its regulation. Herein, we report that EPO expression was induced by HOX and a HOX mimetic in two cell lines derived from neuroblastoma (NB), a tumor of the peripheral nervous system. Both cell lines with inducible EPO expression, SH-SY5Y and Kelly cells, expressed typical neuronal markers like neuropeptide Y (NPY), growth-associated protein-43 (GAP-43), and neuron-specific enolase (ENO). NB cells with a more epithelial phenotype like SH-SHEP and LAN-5 did not show HOX inducible EPO gene regulation. Still, oxygen sensing and up-regulation of hypoxia-inducible factor-1 (HIF-1) were intact in all cell lines. We found that CpG methylation of the HIF binding site (HBS) in the EPO gene 3' enhancer was only present in the SH-SHEP and LAN-5 cells but not in SH-SY5Y and Kelly cells with regulated EPO expression. The addition of recombinant EPO to all NB cells, both under normoxic and hypoxic conditions, had no effect on cell proliferation. We conclude that the ability to respond to HOX with an increase in EPO expression in human NB may depend on CpG methylation and the differentiation status of these embryonic tumor cells but does not affect the proliferative characteristics of the cells.  相似文献   

17.
18.
19.
目的:探索中老年慢性肾脏病并发左室肥厚(LVH)的现况及其危险因素。方法:对我院肾内科住院的40-75岁CKD2-5期患者210例的病历资料进行回顾性分析。结果:(1)心脏舒张功能减退发生率高于收缩功能减退(79.1%VS 20.3%P=0.000);左房扩大检出率高于左室扩大检出率(46.5%VS 19.8%P=0.000);室间隔增厚检出率(IVSH)也高于左室后壁增厚检出率(LVPWH)(43.0%VS 21.1%P=0.000);LVH的发生率高于IVSH检出率(47.9%VS 35%P=0.001),其中女性LVH高于男性(73.2%VS31.0%P=0.000),然而若采用另外一种诊断标准,两者并无统计学差异(50%VS 34.5%P=0.068)。(2)IVSH组收缩压、脉压、血肌酐均高于无IVSH组。IVSH组除上述因素外血磷尚高于无IVSH组,但在CKD5期的亚组分析中仅收缩压与对照组相比有统计学差异。LVH组收缩压、脉压均高于无LVH组,而血红蛋白、体质指数则低于对照组。进一步Logistic回归分析提示仅性别、体质指数有统计学意义。结论:(1)40-75岁的心血管疾病高危的CKD患者中,采用超声心动图诊断LVH,根据公式计算的LVMI诊断阳性率最高,但诊断切点仍需进一步研究。(2)收缩压升高、脉压增大、贫血、低体质指数、女性均可能是LVH的危险因素,控制血压、纠正贫血和营养不良可能是防治LVH的重要靶点。  相似文献   

20.
Interleukin (IL)-10 is an anti-inflammatory factor that suppresses renal fibrosis and improves renal function in CKD rats. IL-20 belongs to the IL-10 family; therefore, we sought to determine whether IL-20 is involved in CKD. CKD patients at stage five expressed significantly higher IL-20 in serum than controls. Immunohistochemical staining demonstrated that more IL-20 protein was expressed in the kidney tubular-epithelial cells, mesangial cells, and immune cells of CKD rats with a 5/6 nephrectomy. The lung, liver, and heart tissue of CKD rats also overexpressed IL-20. Thus, we treated two tubular epithelial cells, TKPTS and M-1 cells, with IL-20 to study its effects on CKD. IL-20 treatment induced apoptosis in these cells via caspase-3 activation. Incubating IL-20 with rat interstitial fibroblasts, NRK-49F cells, upregulated TGF-β1production, one key inducer for renal fibrogenesis. Therefore, IL-20 injured renal epithelial cells and induced fibroblasts to produce TGF-β1 that hastened the progression of CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号