首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the course of breast cancer progression, normally dormant tumour‐promoting effects of transforming growth factor β (TGFβ), including migration, invasion, and metastasis are unmasked. In an effort to identify mechanisms that regulate the pro‐migratory TGFβ ‘switch’ in mammary epithelial cells in vitro, we found that TGFβ stimulates the phosphorylation of Smad1 and Smad5, which are typically associated with bone morphogenetic protein signalling. Mechanistically, this phosphorylation event requires the kinase activity and, unexpectedly, the L45 loop motif of the type I TGFβ receptor, ALK5, as evidenced by studies using short hairpin RNA‐resistant ALK5 mutants in ALK5‐depleted cells and in vitro kinase assays. Functionally, Smad1/5 co‐depletion studies demonstrate that this phosphorylation event is essential to the initiation and promotion of TGFβ‐stimulated migration. Moreover, this phosphorylation event is preferentially detected in permissive environments such as those created by tumorigenic cells or oncogene activation. Taken together, our data provide evidence that TGFβ‐stimulated Smad1/5 phosphorylation, which occurs through a non‐canonical mechanism that challenges the notion of selective Smad phosphorylation by ALK5, mediates the pro‐migratory TGFβ switch in mammary epithelial cells.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non‐resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro‐fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non‐resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ‐induced pro‐fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ‐induced lung fibroblast activation in 2D and 3D co‐cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.  相似文献   

3.
Background information. TGFβ (transforming growth factor β) is a multifunctional cytokine and a potent regulator of cell growth, migration and differentiation in many cell types. In the vascular system, TGFβ plays crucial roles in vascular remodelling, but the signalling pathways involved remain poorly characterized. Results. Using the model of porcine aortic endothelial cells, we demonstrated that TGFβ stimulates cellular spreading when cells are on collagen I. TGFβ‐stimulated Rac1–GTP accumulation, which was associated with increased MAPK (mitogen‐activated protein kinase) p38 phosphorylation. Furthermore, ectopic expression of a dominant‐negative Rac mutant, or treatment of the cells with the p38 pharmacological inhibitor SB203580, abrogated TGFβ‐induced cell spreading. Our results demonstrate for the first time that prolonged exposure to TGFβ stimulates endothelial cell hypertrophy and flattening. Collectively, these data indicate that TGFβ‐induced cell spreading and increase in cell surface areas occurs via a Rac—p38‐dependent pathway. Conclusions. The Rac—p38 pathway may have conceptual implications in pathophysiological endothelial cell responses to TGFβ, such as wound healing or development of atherosclerotic lesions.  相似文献   

4.
The interactions between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) play significant roles in the homeostasis of the blood vessel during vascular remodeling. Cell adhesion and spreading are an essential process for VSMC migration, survival and proliferation in the events of vascular physiology and pathophysiology. However, effects of ECs on adhesion and spreading of VSMCs have not been characterized yet. Here, the interaction of ECs and VSMCs on adhesion and spreading of VSMCs were investigated by using a coculture system. The results showed that VSMCs cocultured with ECs exhibited a significant increase in the number of adherent and spreading cells, and much more mRNA (twofold, P<0.01) and protein (threefold, P<0.05) expression of beta(1)-integrin comparing to the control, i.e., VSMCs cultured alone. Furthermore, the enhanced functional activity of beta(1)-integrin expression was confirmed by FACS. A beta(1)-integrin blocking antibody (P5D2) could inhibit the EC-induced VSMC adhesion and spreading. It was demonstrated that in correspondence with enhanced cell adhesion, ECs also prompted focal adhesion complex assembly and stress fiber formation of VSMCs. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway was more pronouncedly activated in response to VSMC attachment. Our results for the first time show that coculture with ECs enhances VSMC adhesion and spreading by up-regulating beta(1)-integrin expression and activating the PI3K/Akt pathway, suggesting that the interaction between ECs and VSMCs serves an important role in vascular homeostasis and remodeling.  相似文献   

5.
6.
Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies’ potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease.  相似文献   

7.
The expression of ANK, a key player in biomineralization, is stimulated by treatment with TGFβ. The purpose of this study was to determine whether TGFβ stimulation of ANK expression during chondrogenesis was dependent upon the influx of calcium and phosphate into cells. Treatment of ATDC5 cells with TGFβ increased ANK expression during all phases of chondrogenic differentiation, particularly at day 14 (proliferation) and day 32 (mineralizing hypertrophy) of culture. Phosphate uptake studies in the presence and absence of phosphonoformic acid (PFA), a competitive inhibitor of the type III Na+/Pi channels Pit‐1 and Pit‐2, indicated that the stimulation of ANK expression by TGFβ required the influx of phosphate, specifically by the Pit‐1 transporter, at all phases of differentiation. At hypertrophy, when alkaline phosphatase is highly expressed, inhibition of its activity with levamisole also abrogated the stimulatory effect of TGFβ on ANK expression, further illustrating that Pi availability and uptake by the cells is necessary for stimulation of ANK expression in response to TGFβ. Since previous studies of endochondral ossification in the growth plate have shown that L‐type calcium channels are essential for chondrogenesis, we investigated their role in the TGFβ‐stimulated ANK response in ATDC5 cells. Treatment with nifedipine to inhibit calcium influx via the L‐type channel Cav1.2 (α1C) inhibited the TGFβ stimulated increase in ANK expression at all phases of chondrogenesis. Our findings indicate that TGFβ stimulation of ANK expression is dependent upon the influx of phosphate and calcium into ATDC5 cells at all stages of differentiation. J. Cell. Physiol. 224: 540–548, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
To elucidate the effects of endothelium-derived relaxing factor (EDRF) released from vascular endothelial cells (ECs) on handling of intracellular calcium ion (Ca2+i) in ECs themselves and vascular smooth muscle cells (VSMCs), we measured the Ca2+i by two-dimensional digital image analysis of fura-2-loaded ECs and VSMCs in tissue culture. In isoculture of one cell type, adenosine triphosphate (ATP, 1 microM) transiently increased the Ca2+i of both ECs and VSMCs. High-K+ depolarization or angiotensin II also elevated the Ca2+i of VSMCs, whereas neither stimulants changed the Ca2+i of ECs. In coculture of ECs with VSMCs, the same dose of ATP rapidly increased the Ca2+i of ECs and then transiently decreased the Ca2+i of VSMCs to below the resting level. The maximal Ca2+i-modulating effects of ATP on both cell types were reproducible after the second application of ATP. Three kinds of EDRF blockers (L-NG-monomethylarginine, methemoglobin, or methylene blue) potentiated the ATP-induced Ca2+i rise in ECs and attenuated the Ca2+i reduction in VSMCs, suggesting the autocrine and paracrine effects of EDRF on ECs and VSMCs, respectively. However, neither indomethacin, superoxide dismutase, nor neutralizing monoclonal antibody to endothelin-1 altered the second responses. Thus, two-dimensional Ca2+i image analysis of ECs and VSMCs in coculture enabled direct visualization of the EDRF actions in ECs and VSMCs and their modifications.  相似文献   

9.
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to haemodynamic forces, including blood flow‐induced fluid shear stress and cyclic stretch from blood pressure. These forces modulate vascular cell gene expression and function and, therefore, influence vascular physiology and pathophysiology in health and disease. Epigenetics, including DNA methylation, histone modification/chromatin remodelling and RNA‐based machinery, refers to the study of heritable changes in gene expression that occur without changes in the DNA sequence. The role of haemodynamic force‐induced epigenetic modifications in the regulation of vascular gene expression and function has recently been elucidated. This review provides an introduction to the epigenetic concepts that relate to vascular physiology and pathophysiology. Through the studies of gene expression, cell proliferation, angiogenesis, migration and pathophysiological states, we present a conceptual framework for understanding how mechanical force‐induced epigenetic modifications work to control vascular gene expression and function and, hence, the development of vascular disorders. This research contributes to our knowledge of how the mechanical environment impacts the chromatin state of ECs and VSMCs and the consequent cellular behaviours.  相似文献   

10.
Through diametric actions, the transforming growth factor β (TGFβ) and Angiotensin II (AngII) play important roles in regulating various biological responses such as cell proliferation and migration. Signaling initiated by TGFβ and AngII occurs through two structurally and functionally distinct receptor super families, the serine/threonine kinase and G protein-coupled receptors (GPCRs). Previously, we identified the G protein-coupled receptor kinase-2 (GRK2), a key regulatory factor in the desensitization of GPCRs, as a direct downstream target of the TGFβ signaling cascade. GRK2 acts through a negative feed-back loop mechanism to terminate TGFβ-induced smad signaling. To investigate the impact of TGFβ-induced GRK2 expression on GPCR signaling, we examined its effect on AngII signaling in vascular smooth muscle cells (VSMCs). In this study, we show that activation of the TGFβ signaling cascade in VSMCs results in increased GRK2 expression levels, which consequently inhibits AngII-induced ERK phosphorylation and antagonizes AngII-induced VSMC proliferation and migration. Moreover, the inhibitory effect of TGFβ on AngII signaling occurs at the Mek-Erk interface and is abrogated when an anti-sense oligonucleotide directed against GRK2 is used. Thus, we conclude that TGFβ signaling antagonizes AngII-induced VSMC proliferation and migration through the inhibition of ERK phosphorylation and that GRK2 is a key factor mediating the cross-talk between these two receptor super families.  相似文献   

11.
During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) β isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFβ in promoting proliferation of palatal mesenchymal cells has never been explored. The purpose of this study was to identify the effect of TGFβ on human embryonic palatal mesenchymal (HEPM) cell proliferation. Our results showed that all isoforms of TGFβ, especially TGFβ3, increased HEPM cell proliferation by up‐regulating the expression of cyclins and cyclin‐dependent kinases as well as c‐Myc oncogene. TGFβ activated both Smad‐dependent and Smad‐independent pathways to induce c‐Myc gene expression. Furthermore, TBE1 is the only functional Smad binding element (SBE) in the c‐Myc promoter and Smad4, activated by TGFβ, binds to the TBE1 to induce c‐Myc gene activity. We conclude that HEPM proliferation is manifested by the induction of c‐Myc in response to TGFβ signaling, which is essential for complete palatal confluency. Our data highlights the potential role of TGFβ as a therapeutic molecule to correct cleft palate by promoting growth. J. Cell. Biochem. 113: 3069–3085, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Gastric cancer is one of the most common causes of cancer‐related death worldwide. Immunotherapy via programmed cell death protein 1 (PD‐1)/programmed cell death‐ligand 1 (PD‐L1) blockade has shown benefits for gastric cancer. Epigenetic DNA methylation critically regulates cancer immune checkpoints. We investigated how the natural compound oleanolic acid (OA) affected PD‐L1 expression in gastric cancer cells. Interleukin‐1β (IL‐1β) at 20 ng/mL was used to stimulate human gastric cancer MKN‐45 cells. IL‐1β significantly increased PD‐L1 expression, which was abolished by OA. Next, OA‐treated MKN‐45 cells were co‐cultured with activated and PD‐1‐overexpressing Jurkat T cells. OA restored IL‐2 levels in the co‐culture system and increased T cell killing toward MKN‐45 cells. Overexpression of PD‐L1 eliminated OA‐enhanced T cell killing capacity; however, PD‐1 blocking antibody abrogated the cytotoxicity of T cells. Moreover, OA abolished IL‐1β‐increased DNA demethylase activity in MKN‐45 cells. DNA methyltransferase inhibitor 5‐azacytidine rescued OA‐reduced PD‐L1 expression; whereas DNA demethylation inhibitor gemcitabine inhibited PD‐L1 expression, and, in combination with OA, provided more potent inhibitory effects. Furthermore, OA selectively reduced the expression of DNA demethylase TET3 in IL‐1β‐treated MKN‐45 cells, and overexpression of TET3 restored OA‐reduced PD‐L1 expression. Finally, OA disrupted nuclear factor κB (NF‐κB) signaling IL‐1β‐treated MKN‐45 cells, and overexpression of NF‐κB restored OA downregulation of TET3 and PD‐L1. The cytotoxicity of T cells toward MKN‐45 cells was also weakened by NF‐κB overexpression. Altogether, OA blocked the IL‐1β/NF‐κB/TET3 axis in gastric cancer cells, leading to DNA hypomethylation and downregulation of PD‐L1. Our discoveries suggested OA as an epigenetic modulator for immunotherapy or an adjuvant therapy against gastric cancer.  相似文献   

13.
MicroRNA (miRNA) expression is significantly influenced by viral infection, because of either host antiviral defences or proviral factors resulting in the modulation of viral propagation. This study was undertaken to identify and analyse the significance of cellular miRNAs during rotavirus (SA11 or KU) infection. Sixteen differentially regulated miRNAs were identified during rotavirus infection of which hsa‐miR‐142‐5p was up‐regulated and validated by quantitative polymerase chain reaction. Exogenous expression of miR‐142‐5p inhibitor resulted in a significant reduction of viral titer indicating proviral role of miR‐142‐5p. Functional studies of hsa‐miR‐142‐5p identified its role in transforming growth factor beta (TGFβ) signalling as TGFβ receptor 2 and SMAD3 were degraded during both hsa‐miR‐142‐5p overexpression and rotavirus infection. TGFβ is induced during rotavirus infection, which may promote apoptosis by activation of non‐canonical pathways in HT29 cells. However, up‐regulated miR‐142‐5p resulted in the inhibition of TGFβ‐induced apoptosis suggesting its anti‐apoptotic function. Rotavirus NSP5 was identified as a regulator of miR‐142‐5p expression. Concurrently, NSP5‐HT29 cells showed inhibition of TGFβ‐induced apoptosis and epithelial to mesenchymal transition by blocking non‐canonical pathways. Overall, the study identified proviral function of hsa‐miR‐142‐5p during rotavirus infection. In addition, modulation of TGFβ‐induced non‐canonical signalling in microsatellite stable colon cancer cells can be exploited for cancer therapeutics.  相似文献   

14.
TGF‐β1 (transforming growth factor‐β1) plays a central role in regulating proliferation, migration and differentiation of dental pulp cells during the repair process after tooth injury. Our previous study showed that p38 mitogen‐activated protein kinase may act downstream of TGF‐β1 signalling to effect the differentiation of dental pulp cells. However, the molecular mechanisms that trigger and regulate the process remain to be elucidated. TGF‐β1 interacts with signalling pathways such as Wnt/β‐catenin and Rho to induce diverse biological effects. TGF‐β1 activates β‐catenin signalling, increases β‐catenin nuclear translocation and interacts with LEF/TCF to regulate gene expression. Morphologic changes in response to TGF‐β1 are associated with activation of Rho GTPases, but are abrogated by inhibitors of Rho‐associated kinase, a major downstream target of Rho. These results suggest that the Wnt/β‐catenin and Rho pathways may mediate the downstream events of TGF‐β1 signalling.  相似文献   

15.
The cellular and molecular mechanisms that mediate vascular calcification remain poorly understood. In our previous study, oxysterol cholestane-3beta, 5alpha, 6beta-triol (Triol) was shown to promote vascular smooth muscle cells (VSMCs) calcification. In this study, by using direct coculture, non-contact transwell coculture, and culture with conditioned media, we investigated the roles of endothelial cells (ECs) and macrophages in the regulation of VSMCs calcification in the absence or presence of Triol. In vitro calcification was induced by incubation of VSMCs with beta-glycerophosphate. The results showed that ECs inhibited VSMCs calcification, as manifested by the reduction of calcium deposition in extracellular matrix. This effect of ECs on calcification was via the secreted soluble factors. Furthermore, the stimulation of ECs by Triol had no influence on ECs inhibition of calcification. On the other hand, macrophages promoted VSMCs calcification via the secreted soluble factors such as reactive oxygen species, which was further enhanced by Triol. Our results supported the roles for ECs and macrophages in vascular calcification, modulated by oxysterols in atherosclerotic plaque.  相似文献   

16.
Fetal wounds heal without scar formation, fibrosis, or contracture. Compared with adult wounds, they are characterized by major differences in the extracellular matrix and the absence of myofibroblastic cells. The reasons for these differences are not well known and determination of factors affecting the absence of scarring in the fetus may lead to strategies for controlling adult pathological scarring. In the present study, we have assessed the effects of serum on the behavior of normal human dermal fibroblasts. Using an in vitro approach, we investigated the effects of fetal and adult serum on cell properties such as growth rate, collagen synthesis, gelatinase activities, and differentiation to myofibroblasts using biochemical, morphological, and ultrastructural parameters. We studied the induction of α-smooth muscle (α-SM) actin in fibroblasts, and its correlation with increased collagen gel contraction by the cells. Our results showed that, compared with FBS (fetal bovine serum), postnatal calf serum (PCS) decreased mitogenic activity and collagenase synthesis but not collagen synthesis. Furthermore, cells cultured with PCS differentiated to myofibroblasts with an increase in cell diameter, number of stress fibers, α-SM actin expression, and collagen gel contraction. To characterize the molecules involved in this differentiation process, the amount of transforming growth factor β (TGFβ) in FBS and PCS was determined and the effect of neutralizing anti-TGFβ antibody was evaluated. It was determined that FBS contained more TGFβ than PCS, but that essentially all the TGFβ was latent in both sera. However, results obtained with anti-TGFβ antibody show that active TGFβ is present when human dermal fibroblasts are cultured with medium containing PCS. These results suggest that, in the presence of PCS but not FBS, the cells either produce active TGFβ or an enzyme that is able to activate latent serum TGFβ. Alternatively, sera may contain two different forms of latent TGFβ, the PCS form being activated by the dermal fibroblast cells. A similar mechanism may be involved, at least in part, in skin wound healing and may underlie the appearance of myofibroblasts in postnatal wounds. J. Cell. Physiol. 171:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
20.
Transforming growth factor (TGF) β2 and fibroblast growth factor (FGF) 2 are involved in regulation of posterior capsule opacification (PCO) and other processes of epithelial–mesenchymal transition (EMT) such as cancer progression, wound healing and tissue fibrosis as well as normal embryonic development. We previously used an in vivo rodent PCO model to show the expression of tropomyosin (Tpm) 1/2 was aberrantly up‐regulated in remodelling the actin cytoskeleton during EMT. In this in vitro study, we show the Tpms family of cytoskeleton proteins are involved in regulating and stabilizing actin microfilaments (F‐actin) and are induced by TGFβ2 during EMT in lens epithelial cells (LECs). Importantly, we found TGFβ2 and FGF2 played contrasting roles. Stress fibre formation and up‐regulation of α‐smooth muscle actin (αSMA) induced by TGFβ2 could be reversed by Tpm1/2 knock‐down by siRNA. Expression of Tpm1/2 and stress fibre formation induced by TGFβ2 could be reversed by FGF2. Furthermore, FGF2 delivery to TGFβ‐treated LECs perturbed EMT by reactivating the mitogen‐activated protein kinase (MAPK)/ extracellular signal‐regulated kinase (ERK) pathway and subsequently enhanced EMT. Conversely, MEK inhibitor (PD98059) abated the FGF2‐mediated Tpm1/2 and αSMA suppression. However, we found that normal LECs which underwent EMT showed enhanced migration in response to combined TGFβ and FGF2 stimulation. These findings may help clarify the mechanism reprogramming the actin cytoskeleton during morphogenetic EMT cell proliferation and fibre regeneration in PCO. We propose that understanding the physiological link between levels of FGF2, Tpm1/2 expression and TGFβs‐driven EMT orchestration may provide clue(s) to develop therapeutic strategies to treat PCO based on Tpm1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号