共查询到20条相似文献,搜索用时 0 毫秒
1.
Jianyong Yin Zeyuan Lu Feng Wang Zhenzhen Jiang Limin Lu Naijun Miao Niansong Wang 《Journal of cellular and molecular medicine》2016,20(6):1106-1117
Chronic kidney disease is associated with higher risk of cardiovascular complication and this interaction can lead to accelerated dysfunction in both organs. Renalase, a kidney‐derived cytokine, not only protects against various renal diseases but also exerts cardio‐protective effects. Here, we investigated the role of renalase in the progression of cardiorenal syndrome (CRS) after subtotal nephrectomy. Sprague–Dawley rats were randomly subjected to sham operation or subtotal (5/6) nephrectomy (STNx). Two weeks after surgery, sham rats were intravenously injected with Hanks' balanced salt solution (sham), and STNx rats were randomly intravenously injected with adenovirus‐β‐gal (STNx+Ad‐β‐gal) or adenovirus‐renalase (STNx+Ad‐renalase) respectively. After 4 weeks of therapy, Ad‐renalase administration significantly restored plasma, kidney and heart renalase expression levels in STNx rats. We noticed that STNx rats receiving Ad‐renalase exhibited reduced proteinuria, glomerular hypertrophy and interstitial fibrosis after renal ablation compared with STNx rats receiving Ad‐β‐gal; these changes were associated with significant decreased expression of genes for fibrosis markers, proinflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components. At the same time, systemic delivery of renalase attenuated hypertension, cardiomyocytes hypertrophy and cardiac interstitial fibrosis; prevented cardiac remodelling through inhibition of pro‐fibrotic genes expression and phosphorylation of extracellular signal‐regulated kinase (ERK)‐1/2. In summary, these results indicate that renalase protects against renal injury and cardiac remodelling after subtotal nephrectomy via inhibiting inflammation, oxidative stress and phosphorylation of ERK‐1/2. Renalase shows potential as a therapeutic target for the prevention and treatment of CRS in patients with chronic kidney disease. 相似文献
2.
Chaoqun Nie Rentong Zou Shuang Pan Rong A Yunan Gao Hongxiao Yang Juncai Bai Shuiqing Xi Xue Wang Xiaojian Hong Wei Yang 《Journal of cellular and molecular medicine》2021,25(18):8997-9010
It is noteworthy that prolonged cardiac structural changes and excessive fibrosis caused by myocardial infarction (MI) seriously interfere with the treatment of heart failure in clinical practice. Currently, there are no effective and practical means of either prevention or treatment. Thus, novel therapeutic approaches are critical for the long-term quality of life of individuals with myocardial ischaemia. Herein, we aimed to explore the protective effect of H2, a novel gas signal molecule with anti-oxidative stress and anti-inflammatory effects, on cardiac remodelling and fibrosis in MI rats, and to explore its possible mechanism. First, we successfully established MI model rats, which were then exposed to H2 inhalation with 2% concentration for 28 days (3 hours/day). The results showed that hydrogen gas can significantly improve cardiac function and reduce the area of cardiac fibrosis. In vitro experiments further proved that H2 can reduce the hypoxia-induced damage to cardiomyocytes and alleviate angiotensin II-induced migration and activation of cardiac fibroblasts. In conclusion, herein, we illustrated for the first time that inhalation of H2 ameliorates myocardial infarction-induced cardiac remodelling and fibrosis in MI rats and exert its protective effect mainly through inhibiting NLRP3-mediated pyroptosis. 相似文献
3.
Shuai Mao Yubin Liang Peipei Chen Yuzhuo Zhang Xin Yin Minzhou Zhang 《Journal of cellular and molecular medicine》2020,24(17):10042-10051
Cardiac remodelling following myocardial infarction (MI) is a maladaptive change associated with progressive heart failure and compromises long‐term clinical outcome. A substantial proportion of patients afflicted by MI still develop adverse outcomes associated with cardiac remodelling. Therefore, it is crucial to identify biomarkers for the early prediction of cardiac remodelling. An in‐depth proteomics approach, including both semi‐quantitative and quantitative antibody arrays, was used to identify circulating biomarkers that may be associated with detrimental cardiac remodelling. Furthermore, statistical correlation analysis was performed between the candidate biomarkers and clinical cardiac remodelling data to demonstrate their clinical utility. A systematic proteomics approach revealed that sclerostin (SOST), growth differentiation factor‐15 (GDF‐15), urokinase‐type plasminogen activator (uPA), and midkine (MK) were increased, while monocyte chemotactic protein‐3 (MCP‐3) was uniquely decreased in MI patients who developed cardiac remodelling, compared to MI patients who did not develop cardiac remodelling and healthy humen. Moreover, correlation analyses between serum proteomes and cardiac remodelling echocardiographic parameters demonstrated a moderate positive association between left ventricular end‐diastolic volume index (LVEDVi) and the three serum proteins, uPA, MK and GDF‐15 (P < .05, respectively), and a moderate negative correlation between LV ejection fraction (LVEF) and these serum proteins (P < .05, respectively). Importantly, uPA and MK were firstly identified to be associated with the development of cardiac remodelling. The present study contributes to a better understanding of the various cytokines expressed during adverse cardiac remodelling. The identified biomarkers may facilitate early identification of patients at high risk of ischaemic heart failure pending further confirmation through larger clinical trials. 相似文献
4.
Yuzhen Wei Yin Lan Yucheng Zhong Kunwu Yu Wenbin Xu Ruirui Zhu Haitao Sun Yan Ding Yue Wang Qiutang Zeng 《Journal of cellular and molecular medicine》2020,24(1):371-384
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI. 相似文献
5.
Yiteng Liao Hao Li Hao Cao Yun Dong Lei Gao Zhongmin Liu Junbo Ge Hongming Zhu 《蛋白质与细胞》2021,12(3):194-212
Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction(Ml).MicroRNA-146b(miR-146b)is an active regulator of immunomodulation,but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following Ml remain largely unknown.Herein,miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients.Gain-and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells.Overexpression of miR-146b-5p activated fibroblast proliferation,migration,and fibroblast-to-myofibroblast transition,impaired endothelial cell function and stress survival,and disturbed macrophage paracrine signaling.Interestingly,the opposite effects were observed when miR-146b-5p expression was inhibited.Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1(IRAKI)and carcinoembryonic antigen related cell adhesion molecule 1(CEACAM1).Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death,and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine Ml models.Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following Ml. 相似文献
6.
树突状细胞在肾小管间质纤维化中作用及缬沙坦的干预调节 总被引:1,自引:0,他引:1
探讨树突状细胞(DC)在肾纤维化大鼠肾小管间质中分布,以及缬沙坦对DC浸润聚集的干预作用。建立肾大部切除大鼠模型,随机分为正常组(n=18),假手术组(n=18),模型组(n=18),缬沙坦治疗组(n=18)。分别于建模1、4、12周取肾组织,采用HE和Masson染色评定各组肾小管间质纤维化(TIF)程度;采用免疫双染及荧光图像分析法,观察DC-SIGN DC在各组大鼠肾组织中分布变化;采用免疫组化方法,观察P-选择素以及TGF-β1、α-平滑肌肌动蛋白(α-SMA)、III型胶元(ColIII)、纤维连接蛋白(FN)在上述肾组织中表达;以及RT-PCR检测P-选择素、TGF-β1、α-SMA、ColIII、FN的mRNA水平。结果显示,(1)模型组DC-SIGN DC主要分布于肾小管、肾间质和肾血管,以肾间质最为明显;其分布数量于12周较1和4周呈明显增多,且与慢性肾功能减退呈正相关。(2)12周时手术组大鼠肾小管间质区P-选择素、TGF-β1、α-SMA、ColIII、FN mRNA转录水平和蛋白质表达均明显增加,并与TIF程度以及DC-SIGN DC分布数量呈正相关。(3)经缬沙坦治疗后,DC-SIGN DC分布减少,以及P-选择素、TGF-β1、α-SMA、ColIII、FN mRNA转录水平和蛋白质表达下降,TIF程度减轻及肾功能改善。研究结果表明,DC启动参与了肾小管间质纤维化形成,并与肾功能损害程度密切相关。缬沙坦对此具有明显的抑制和肾脏保护作用。 相似文献
7.
Saori Yonebayashi Kazuko Tajiri Nobuyuki Murakoshi Dongzhu Xu Siqi Li Duo Feng Yuta Okabe Zixun Yuan Zonghu Song Kazuhiro Aonuma Akira Shibuya Kazutaka Aonuma Masaki Ieda 《Journal of cellular and molecular medicine》2020,24(24):14481
Macrophages are fundamental components of inflammation in post‐myocardial infarction (MI) and contribute to adverse cardiac remodelling and heart failure. However, the regulatory mechanisms in macrophage activation have not been fully elucidated. Previous studies showed that myeloid‐associated immunoglobulin–like receptor II (MAIR‐II) is involved in inflammatory responses in macrophages. However, its role in MI is unknown. Thus, this study aimed to determine a novel role and mechanism of MAIR‐II in MI. We first identified that MAIR‐II–positive myeloid cells were abundant from post‐MI days 3 to 5 in infarcted hearts of C57BL/6J (WT) mice induced by permanent left coronary artery ligation. Compared to WT, MAIR‐II–deficient (Cd300c2 −/−) mice had longer survival, ameliorated cardiac remodelling, improved cardiac function and smaller infarct sizes. Moreover, we detected lower pro‐inflammatory cytokine and fibrotic gene expressions in Cd300c2 −/−‐infarcted hearts. These mice also had less infiltrating pro‐inflammatory macrophages following MI. To elucidate a novel molecular mechanism of MAIR‐II, we considered macrophage activation by Toll‐like receptor (TLR) 9–mediated inflammation. In vitro, we observed that Cd300c2 −/− bone marrow–derived macrophages stimulated by a TLR9 agonist expressed less pro‐inflammatory cytokines compared to WT. In conclusion, MAIR‐II may enhance inflammation via TLR9‐mediated macrophage activation in MI, leading to adverse cardiac remodelling and poor prognosis. 相似文献
8.
Elena Revuelta‐López Carol Soler‐Botija Laura Nasarre Aleyda Benitez‐Amaro David de Gonzalo‐Calvo Antoni Bayes‐Genis Vicenta Llorente‐Cortés 《Journal of cellular and molecular medicine》2017,21(9):1915-1928
Left ventricular (LV) remodelling after myocardial infarction (MI) is a crucial determinant of the clinical course of heart failure. Matrix metalloproteinase (MMP) activation is strongly associated with LV remodelling after MI. Elucidation of plasma membrane receptors related to the activation of specific MMPs is fundamental for treating adverse cardiac remodelling after MI. The aim of current investigation was to explore the potential association between the low‐density lipoprotein receptor‐related protein 1 (LRP1) and MMP‐9 and MMP‐2 spatiotemporal expression after MI. Real‐time PCR and Western blot analyses showed that LRP1 mRNA and protein expression levels, respectively, were significantly increased in peri‐infarct and infarct zones at 10 and 21 days after MI. Confocal microscopy demonstrated high colocalization between LRP1 and the fibroblast marker vimentin, indicating that LRP1 is mostly expressed by cardiac fibroblasts in peri‐infarct and infarct areas. LRP1 also colocalized with proline‐rich tyrosine kinase 2 (pPyk2) and MMP‐9 in cardiac fibroblasts in ischaemic areas at 10 and 21 days after MI. Cell culture experiments revealed that hypoxia increases LRP1, pPyk2 protein levels and MMP‐9 activity in fibroblasts, without significant changes in MMP‐2 activity. MMP‐9 activation by hypoxia requires LRP1 and Pyk2 phosphorylation in fibroblasts. Collectively, our in vivo and in vitro data support a major role of cardiac fibroblast LRP1 levels on MMP‐9 up‐regulation associated with ventricular remodelling after MI. 相似文献
9.
Shiyu Ma Jin Ma Xiaoyi Mai Xujie Zhao Liheng Guo Minzhou Zhang 《Journal of cellular and molecular medicine》2019,23(8):5454-5465
Danqi soft capsule (DQ) is a traditional Chinese medicine containing Salvia miltiorrhiza and Panax notoginseng; it is safe and efficient in treating ischaemic heart diseases. The purpose of the present study was to assess whether DQ could prevent infarct border zone (IBZ) remodelling and decrease ventricular arrhythmias occurrence in post‐myocardial infarction (MI) stage. MI was induced by a ligation of the left anterior descending coronary artery. DQ was administered to the post‐MI rats started from 1 week after MI surgery for 4 weeks. The results showed that DQ treatment significantly attenuated tachyarrhythmia induction rates and arrhythmia score in post‐MI rats. In echocardiography, DQ improved left ventricular (LV) systolic and diastolic function. Histological assessment revealed that DQ significantly reduced fibrotic areas and myocyte areas, and increased connexin (Cx) 43 positive areas in IBZ. Western blot revealed that DQ treatment significantly reduced the protein expression levels of type I and III collagens, α‐smooth muscle actin (α‐SMA), transforming growth factor‐β1 (TGF‐β1) and Smad3 phosphorylation, while increasing Cx43 amounts. Overall, these findings mainly indicated that DQ intervention regulates interstitial fibrosis, Cx43 expression and myocyte hypertrophy by TGF‐β1/Smad3 pathway in IBZ, inhibits LV remodelling and reduces vulnerability to tachyarrhythmias after MI. This study presents a proof of concept for novel antiarrhythmic strategies in preventing IBZ remodelling, modifying the healed arrhythmogenic substrate and thus reducing susceptibility to ventricular arrhythmias in the late post‐MI period. 相似文献
10.
Zhaofu Liao Dan Li Yilin Chen Yunjian Li Ruijin Huang Kuikui Zhu Hongyi Chen Ziqiang Yuan Xin Zheng Hui Zhao Qin Pu Xufeng Qi Dongqing Cai 《Journal of cellular and molecular medicine》2019,23(12):8328-8342
Thus far, the cellular and molecular mechanisms related to early (especially within 24 hours after acute myocardial infarct (MI)) exercise‐mediated beneficial effects on MI have not yet been thoroughly established. In the present study, we demonstrated that acute MI rats that underwent early moderate exercise training beginning one day after MI showed no increase in mortality and displayed significant improvements in MI healing and ventricular remodelling, including an improvement in cardiac function, a decrease in infarct size, cardiomyocyte apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy, and an increase in myocardial angiogenesis, left ventricular wall thickness and the number of cardiac telocytes in the border zone. Integrated miRNA‐mRNA profiling analysis performed by the ingenuity pathway analysis system revealed that the inhibition of the TGFB1 regulatory network, activation of leucocytes and migration of leucocytes into the infarct zone comprise the molecular mechanism underlying early moderate exercise‐mediated improvements in cardiac fibrosis and the pathological inflammatory response. The findings of the present study demonstrate that early moderate exercise training beginning one day after MI is safe and leads to significantly enhanced MI healing and ventricular remodelling. Understanding the mechanism behind the positive effects of this early training protocol will help us to further tailor suitable cardiac rehabilitation programmes for humans. 相似文献
11.
Patricia Chakur Brum Daria Mochly‐Rosen 《Journal of cellular and molecular medicine》2011,15(8):1769-1777
Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end‐stage heart failure (HF). Also targeted overexpression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post‐myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKCβII on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKCβII selective inhibitor (βIIV5‐3 conjugated to TAT47–57 carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT47–57 carrier peptide alone). Formalin‐fixed mid‐ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two‐fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKCβII inhibitor. Further, a 90% decrease in active TGFβ1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKCβII attenuates cardiac remodelling mediated by the TGF‐SMAD signalling pathway. Therefore, sustained selective inhibition of PKCβII in a post‐MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling. 相似文献
12.
13.
Fangfang Li Yiming Yang Chuanyou Xue Mengtong Tan Lu Xu Jianbo Gao Luhong Xu Jing Zong Wenhao Qian 《Journal of cellular and molecular medicine》2020,24(22):13383
This study aims to determine the efficacy of Zinc finger protein ZBTB20 in treatment of post‐infarction cardiac remodelling. For this purpose, left anterior descending (LAD) ligation was operated on mice to induce myocardial infarction (MI) with sham control group as contrast and adeno‐associated virus (AAV9) system was used to deliver ZBTB20 to mouse heart by myocardial injection with vehicle‐injected control group as contrast two weeks before MI surgery. Then four weeks after MI, vehicle‐treated mice with left ventricular (LV) remodelling underwent deterioration of cardiac function, with symptoms of hypertrophy, interstitial fibrosis, inflammation and apoptosis. The vehicle‐injected mice also showed increase of infarct size and decrease of survival rate. Meanwhile, the ZBTB20‐overexpressed mice displayed improvement after MI. Moreover, the anti‐apoptosis effect of ZBTB20 was further confirmed in H9c2 cells subjected to hypoxia in vitro. Further study suggested that ZBTB20 exerts cardioprotection by inhibiting tumour necrosis factor α/apoptosis signal‐regulating kinase 1 (ASK1)/c‐Jun N‐terminal kinase 1/2 (JNK1/2) signalling, which was confirmed by shRNA‐JNK adenoviruses transfection or a JNK activator in vitro as well as ASK1 overexpression in vivo. In summary, our data suggest that ZBTB20 could alleviate cardiac remodelling post‐MI. Thus, administration of ZBTB20 can be considered as a promising treatment strategy for heart failure post‐MI.Significance Statement: ZBTB20 could alleviate cardiac remodelling post‐MI via inhibition of ASK1/JNK1/2 signalling. 相似文献
14.
Baoyin Zhao Zhaofu Liao Shang Chen Ziqiang Yuan Chen Yilin Kenneth K.H. Lee Xufeng Qi Xiaotao Shen Xin Zheng Thomas Quinn Dongqing Cai 《Journal of cellular and molecular medicine》2014,18(5):780-789
The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells. 相似文献
15.
Ccr1 deficiency reduces inflammatory remodelling and preserves left ventricular function after myocardial infarction 总被引:1,自引:0,他引:1
Liehn EA Merx MW Postea O Becher S Djalali-Talab Y Shagdarsuren E Kelm M Zernecke A Weber C 《Journal of cellular and molecular medicine》2008,12(2):496-506
Myocardial necrosis triggers inflammatory changes and a complex cytokine cascade that are only incompletely understood. The chemokine receptor CCR1 mediates inflammatory recruitment in response to several ligands released by activated platelets and up-regulated after myocardial infarction (MI). Here, we assess the effect of CCR1 on remodelling after MI using Ccr1-deficient (Ccr1(-)(/-)) mice. MI was induced in Ccr1(-/-) or wild-type mice by proximal ligation of the left anterior descending (LAD). Mice were sacrificed and analysed at day 1, 4, 7, 14 and 21 after MI. While initial infarct areas and areas at risk did not differ between groups, infarct size increased to 20.6+/-8.4% of the left ventricle (LV) in wild-type mice by day 21 but remained at 11.2+/-1.2% of LV (P<0.05) in Ccr1(-/-) mice. This attenuation in infarct expansion was associated with preserved LV function, as analysed by isolated heart studies according to Langendorff. Left ventricular developed pressure was 84.5+/-19.8 mmHg in Ccr1(-/-) mice compared to 49.0+/-19.7 mmHg in wild-type mice (P<0.01) and coronary flow reserve was improved in Ccr1(-/-) mice. An altered post-infarct inflammatory pattern was observed in Ccr1(-/-) mice characterized by diminished neutrophil infiltration, accelerated monocyte/lymphocyte infiltration, decreased apoptosis, increased cell proliferation and earlier myofibroblast population in the infarcted tissue. In conclusion, functional impairment and structural remodelling after MI is reduced in the genetic absence of Ccr1 due to an abrogated early inflammatory recruitment of neutrophils and improved tissue healing, thus revealing a potential therapeutic target. 相似文献
16.
Zhouyan Bian Jun Cai Di-fei Shen Li Chen Ling Yan Qizhu Tang Hongliang Li 《Journal of cellular and molecular medicine》2009,13(7):1302-1313
Cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein of 220 amino acids. It has been proposed that CREG acts as a ligand that enhances differentiation and/or reduces cell proliferation. CREG has been shown previously to attenuate cardiac hypertrophy in vitro . However, such a role has not been determined in vivo . In the present study, we tested the hypothesis that overexpression of CREG in the murine heart would protect against cardiac hypertrophy and fibrosis in vivo . The effects of constitutive human CREG expression on cardiac hypertrophy were investigated using both in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding and infusion of angiotensin II in CREG transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive over-expression of human CREG in the murine heart attenuated the hypertrophic response, markedly reduced inflammation. Cardiac function was also preserved in hearts with increased CREG levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase 1 (MEK-ERK1)/2-dependent signalling cascade. In addition, CREG expression blocked fibrosis and collagen synthesis through blocking MEK-ERK1/2-dependent Smad 2/3 activation in vitro and in vivo . Therefore, the expression of CREG improves cardiac functions and inhibits cardiac hypertrophy, inflammation and fibrosis through blocking MEK-ERK1/2-dependent signalling. 相似文献
17.
Tsung‐Ming Lee Shinn‐Zong Lin Nen‐Chung Chang 《Journal of cellular and molecular medicine》2014,18(12):2454-2465
Clinical and experimental studies have established that gender is a factor in the development of ventricular hypertrophy. We investigated whether the attenuated hypertrophic effect of oestradiol was via activation of phosphatidylinositol 3‐kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) through non‐genomic action. Twenty‐four hours after coronary ligation, female Wistar rats were randomized into control, subcutaneous oestradiol treatment or a G‐protein coupled oestrogen receptor (GPER) agonist, G‐1 and treated for 4 weeks starting from 2 weeks after bilateral ovariectomy. Ventricular hypertrophy assessed by cardiomyocyte size after infarction was similarly attenuated by oestradiol or G‐1 in infarcted rats. The phosphorylation of Akt and eNOS was significantly decreased in infarcted rats and restored by oestradiol and G‐1, implying the GPER pathway in this process. Oestradiol‐induced Akt phosphorylation was not abrogated by G‐15 (a GPER blocker). Akt activation was not inhibited by actinomycin D. When a membrane‐impermeable oestrogen‐albumin construct was applied, similar responses in terms of eNOS activation to those of oestradiol were achieved. Furthermore, PPT, an ERα receptor agonist, activated the phosphorylation of Akt and eNOS. Thus, membrane ERα receptor played a role in mediating the phosphorylation of Akt and eNOS. The specific PI3K inhibitor, LY290042, completely abolished Akt activation and eNOS phosphorylation in infarcted hearts treated with either oestradiol or oestradiol + G‐15. These data support the conclusions that oestradiol improves ventricular remodelling by both GPER‐ and membrane‐bound ERα‐dependent mechanisms that converge into the PI3K/Akt/eNOS pathway, unveiling a novel mechanism by which oestradiol regulates pathological cardiomyocyte growth after infarction. 相似文献
18.
19.
Yang Pan Quanyi Li Hong Yan Jin Huang Zhi Wang 《Journal of cellular and molecular medicine》2020,24(18):10382-10390
Apela was recently identified as a new ligand of the apelin peptide jejunum (APJ) receptor. The purpose of this study was to investigate the role of apela in post‐myocardial infarction (post‐MI) recovery from cardiorenal damage. A murine MI model was established, and apela was then infused subcutaneously for two weeks. Echocardiographs were performed before and after infarction at the indicated times. Renal function was evaluated by serum and urine biochemistry. Immunohistochemistry of heart and kidney tissue was performed by in situ terminal deoxynucleotidyl transferase‐mediated dUPT nick end‐labelling reaction. Compared to the control group (MI/vehicle), the average value of the left ventricular ejection fraction in apela‐treated mice increased by 32% and 39% at 2‐ and 4‐week post‐MI, respectively. The mean levels of serum blood urea nitrogen,creatinine, N‐terminal pro‐brain natriuretic peptide and 24‐hour urine protein were significantly decreased at 4‐week post‐MI in apela‐treated mice relative to that of control animals. At the cellular level, we found that apela treatment significantly reduced myocardial fibrosis and cellular apoptosis in heart and kidney tissue. These data suggest that apela improves cardiac and renal function in mice with acute MI. The peptide may be potential therapeutic agent for heart failure. 相似文献
20.
Ke Xue Jun Zhang Cong Li Jing Li Cong Wang Qingqing Zhang Xianlu Chen Xiaotang Yu Lei Sun Xiao Yu 《Journal of cellular and molecular medicine》2019,23(6):4229-4243
Transforming growth factor beta (TGFβ) plays a crucial role in tissue fibrosis. A number of studies have shown that TGFβ3 significantly attenuated tissue fibrosis. However, the mechanism involved in this effect is poorly understood. In this study we found that the expression level of TGFβ3 was higher in human myocardial infarction (MI) tissues than in normal tissues, and interestingly, it increased with the development of fibrosis post‐myocardial infarction (post‐MI). In vitro, human cardiac fibroblasts (CFs) were incubated with angiotensin II (Ang II) to mimic the ischaemic myocardium microenvironment and used to investigate the anti‐fibrotic mechanism of TGFβ3. Then, fibrosis‐related proteins were detected by Western blot. It was revealed that TGFβ3 up‐regulation attenuated the proliferation, migration of human CFs and the expression of collagens, which are the main contributors to fibrosis, promoted the phenotype shift and the cross‐linking of collagens. Importantly, the expression of collagens was higher in the si‐smad7 groups than in the control groups, while silencing smad7 increased the phosphorylation level of the TGFβ/smad signalling pathway. Collectively, these results indicated that TGFβ3 inhibited fibrosis via the TGFβ/smad signalling pathway, possibly attributable to the regulation of smad7, and that TGFβ3 might serve as a potential therapeutic target for myocardial fibrosis post‐MI. 相似文献