首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Objectives: To analyze the predictive value of cardiac collagen metabolism “in vivo" in patients with myocardial infarction (MI) treated with percutaneous coronary intervention (PCI). Design: Forty-five patients (age 66 ± 8.27) underwent biochemical analysis for cardiac collagen metabolism (groups A, B and C); 30 patients with their first MI were treated with successful PCI (group A; n = 30), group B (n = 5) were MI patients with unsuccessful PCI. Group C were patients without MI (n = 10), they underwent elective diagnostic coronary angiography only. The collagen metabolism was analyzed in acute and subacute MI phases by using serum blood markers: the carboxy-terminal propeptide of type I procollagen (PICP), amino-terminal propeptide of type III procollagen (PIIINP) and carboxy-terminal telopeptide of type I collagen (ICTP). Furthermore, the ejection fraction (EF) and left ventricular end-diastolic volume maximal changes in the course of 6 months were measured by echocardiography. Results: A significant increase of both PICP and PIIINP on day 4 following MI was detected. Furthermore, PICP and PIIINP level assessed on the 30th day was significantly higher in the PCI unsuccessful group versus successful group. PICP level on day 4 above 110 ug/l and PIIINP level above 4 ug/l was significantly often found in the subgroup of patients with the EF improvement less than 10% or worsening and with significant left ventricular dilatation during 6 months follow-up. Cardiac catheterization itself does not affect collagen metabolism. Conclusion: We concluded that collagen metabolism markers enable to study in vivo the MI healing and to predict left ventricular functional and volume changes.  相似文献   

4.
5.
6.
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.  相似文献   

7.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

8.
In this study, we examined the neuroprotective effects and anti‐inflammatory properties of Dl‐3‐n‐butylphthalide (NBP) in Sprague‐Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL‐positive cells at 7 days post‐injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF‐κB expression at 1 day post‐injury. In a co‐culture system with BV‐2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV‐2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV‐2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF‐κB expression in BV‐2 cells. Our findings demonstrate that NBP may have neuroprotective and anti‐inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF‐κB signalling.  相似文献   

9.
10.
Inflammatory response plays an important role in ischaemia reperfusion injury (IRI) through a variety of inflammatory cells. Apart from neutrophils, macrophages and lymphocytes, the role of dendritic cells (DCs) in IRI has been noticed. The study was aimed at investigating whether the high‐mobility group protein box‐1/toll like receptor 4 (HMGB1/TLR4) signalling pathway regulate the migration, adhesion and aggregation of DCs to the myocardium, induce DCs activation and maturation, stimulate the expression of surface costimulatory molecules and participate in myocardial IRI. In vivo, migration, adhesion, and aggregation of DCs was enhanced; the expression of peripheral blood DCs CD80 and CD86, myocardial adhesion molecules were increased; and the infarct size was increased during myocardial ischaemia reperfusion injury myocardial ischemic/reperfusion injury (MI/RI). These responses induced by MI/RI were significantly inhibited by HMGB1 specific neutralizing antibody treatment. Cellular experiments confirmed that HMGB1 promoted the release of inflammatory cytokines through TLR4/MyD88/NF‐κB, upregulated CD80 and CD86 expression, mediated the damage of cardiomyocytes and accelerated the apoptosis. Our results indicate that DCs activation and maturation, stimulate the expression of surface costimulatory molecules by promoting the release of inflammatory factors through NF‐κB pathway and participate in myocardial IRI.  相似文献   

11.
This study tested the hypothesis that melatonin (Mel) therapy preserved the brain architectural and functional integrity against ischaemic stroke (IS) dependently through suppressing the inflammatory/oxidative stress downstream signalling pathways. Adult male B6 (n = 6 per each B6 group) and TLR4 knockout (ie TLR4?/?) (n = 6 per each TLR4?/? group) mice were categorized into sham control (SCB6), SCTLR4?/?, ISB6, ISTLR4?/?, ISB6 + Mel (i.p. daily administration) and ISTLR4?/? + Mel (i.p. daily administration). By day 28 after IS, the protein expressions of inflammatory (HMBG1/TLR2/TLR4/MAL/MyD88/RAM TRIF/TRAF6/IKK‐α/p‐NF‐κB/nuclear‐NF‐κB/nuclear‐IRF‐3&7/IL‐1β/IL‐6/TNF‐α/IFN‐γ) and oxidative stress (NOX‐1/NOX‐2/ASK1/p‐MKK4&7/p‐JNK/p‐c‐JUN) downstream pathways as well as mitochondrial‐damaged markers (cytosolic cytochrome C/cyclophilin D/SRP1/autophagy) were highest in group ISB6, lowest in groups SCB6 and SCTLR4?/?, lower in group ISTLR4?/? + Mel than in groups ISTLR4?/? and ISB6 + Mel and lower in group ISB6 + Mel than in group ISTLR4?/? (all P < .0001). The brain infarct volume, brain infarct area and the number of inflammatory cells in brain (CD14/F4‐88) and in circulation (MPO+//Ly6C+/CD11b+//Ly6G+/CD11b+) exhibited an identical pattern, whereas the neurological function displayed an opposite pattern of inflammatory protein expression among the six groups (all P < .0001). In conclusion, TLR inflammatory and oxidative stress signallings played crucial roles for brain damage and impaired neurological function after IS that were significantly reversed by Mel therapy.  相似文献   

12.
Myocardial infarction (MI) is an acute coronary syndrome that refers to tissue infarction of the myocardium. This study aimed to investigate the effect of long intergenic non‐protein‐coding RNA (lincRNA) ATPase plasma membrane Ca2+ transporting 1 antisense RNA 1 (ATP2B1‐AS1) against MI by targeting nuclear factor‐kappa‐B inhibitor alpha (NFKBIA) and mediating the nuclear factor‐kappa‐B (NF‐κB) signalling pathway. An MI mouse model was established and idenepsied by cardiac function evaluation. It was determined that ATP2B1‐AS1 was highly expressed, while NFKBIA was poorly expressed and NF‐κB signalling pathway was activated in MI mice. Cardiomyocytes were extracted from mice and introduced with a series of mouse ATP2B1‐AS1 vector, NFKBIA vector, siRNA‐mouse ATP2B1‐AS1 and siRNA‐NFKBIA. The expression of NF‐κBp50, NF‐κBp65 and IKKβ was determined to idenepsy whether ATP2B1‐AS1 and NFKBIA affect the NF‐κB signalling pathway, the results of which suggested that ATP2B1‐AS1 down‐regulated the expression of NFKBIA and activated the NF‐κB signalling pathway in MI mice. Based on the data from assessment of cell viability, cell cycle, apoptosis and levels of inflammatory cytokines, either silencing of mouse ATP2B1‐AS1 or overexpression of NFKBIA was suggested to result in reduced cardiomyocyte apoptosis and expression of inflammatory cytokines, as well as enhanced cardiomyocyte viability. Our study provided evidence that mouse ATP2B1‐AS1 silencing may have the potency to protect against MI in mice through inhibiting cardiomyocyte apoptosis and inflammation, highlighting a great promise as a novel therapeutic target for MI.  相似文献   

13.
It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll‐like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low‐density lipoproteins, the oxysterol 27‐hydroxycholesterol (27‐OH) and the aldehyde 4‐hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high‐risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27‐OH and HNE were found to enhance cell release of IL‐8, IL‐1β, and TNF‐α and to upregulate matrix metalloproteinase‐9 (MMP‐9) via TLR4/NF‐κB‐dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP‐9 upregulation, thus enhancing the release of this matrix‐degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP‐9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF‐κB downstream signaling.  相似文献   

14.
The current examination was intended to observe the defensive impacts of embelin against paraquat‐incited lung damage in relationship with its antioxidant and anti‐inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin‐1β (IL‐1β), tumor necrosis factor‐α, and IL‐6, histological examination, and nuclear factor kappa B/mitogen‐activated protein kinase (NF‐κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat‐administered and paraquat‐intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF‐κB p65, p‐NF‐κBp65, p38 MAPK, and p‐p38 MAPKs in paraquat‐intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF‐κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.  相似文献   

15.
In the present study, beneficial effect of S‐allyl cysteine (SAC) was evaluated in the lipopolysaccharide/d ‐galactosamine (LPS/d ‐Gal) model of acute liver injury (ALI). To mimic ALI, LPS and d ‐Gal (50 μg/kg and 400 mg/kg, respectively) were intraperitoneally administered and animals received SAC per os (25 or 100 mg/kg/d) for 3 days till 1 hour before LPS/d ‐Gal injection. Pretreatment of LPS/d ‐Gal group with SAC‐lowered activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and partially reversed inappropriate alterations of hepatic oxidative stress‐ and inflammation‐related biomarkers including liver reactive oxygen species, malondialdehyde, and hepatic activity of the defensive enzyme superoxide dismutase, ferric reducing antioxidant power (FRAP), toll‐like receptor‐4 (TLR4), cyclooxygenase 2, NLR family pyrin domain containing 3 (NLRP3), caspase 1, nuclear factor κB (NF‐κB), interleukin 1β (IL‐1β), IL‐6, tumor necrosis factor‐α, and myeloperoxidase activity. Additionally, SAC was capable to ameliorate apoptotic biomarkers including caspase 3 and DNA fragmentation. In summary, SAC can protect liver against LPS/d ‐Gal by attenuation of neutrophil infiltration, oxidative stress, inflammation, apoptosis, and pyroptosis which is partly linked to its suppression of TLR4/NF‐κB/NLRP3 signaling.  相似文献   

16.
17.
Pneumonia is a chronic disorder of the respiratory system associated with worsening quality of life and a significant economic burden. Pinitol, a plant cyclic polyol, has been documented for immune‐inflammatory potential. The aim of present investigation was to evaluate the potential and possible mechanism of action of pinitol against lipopolysaccharide (LPS)‐induced pneumonia in the experimental animal model. Pneumonia was induced in Sprague‐Dawley rats by intratracheal administration of LPS (2 mg/kg). Animals were treated with either vehicle or dexamethasone or pinitol (5 or 10 or 20 mg/kg). Potential of pinitol against LPS‐induced pulmonary insult was assessed based on behavioral, biochemical, molecular, and ultrastructural studies. Intratracheal instillation of LPS induced significant (P < .05) inflammatory infiltration in bronchoalveolar lavage fluid (BALF) and lung tissue reflected by elevated pleural effusion volume, lung edema, BALF polymorphonuclear leukocytes count and lung myeloperoxidase levels, which was attenuated by pinitol (10 and 20 mg/kg) administration. Pinitol also markedly (P < .05) inhibited LPS‐induced alterations in electrocardiographic, hemodynamic changes, right ventricular, and lung function tests. The LPS‐induced downregulated nuclear factor erythroid 2–related factor 2 (Nrf‐2) and heme oxygenase‐1 (HO‐1), whereas upregulated transforming growth factor‐β (TGF‐β), tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, NOD‐, LRR‐, and pyrin domain‐containing protein 3 (NLRP3), and inducible nitric oxide synthase (iNOs) lung messenger RNA expressions were significantly (P < .05) inhibited by pinitol. Western blot analysis suggested pinitol markedly (P < .05) decreased nuclear factor‐κB (NF‐κB), inhibitor of nuclear factor κB (IkBα), toll‐like receptor 4 (TLR‐4), and cyclooxygenase‐II (COX‐II) protein expressions in the lung. These findings were further supported by histological and ultrastructural analyses of lung tissue that show pinitol significantly (P < .05) ameliorates LPS‐induced aberrations in lung tissue. In conclusion, pinitol attenuated LPS‐induced pneumonia via inhibition of TLR‐4 to downregulate the NF‐κB/IκBα signaling cascade and thus ameliorated the production of proinflammatory cytokines (TNF‐α, ILs, NLRP3, and TGF‐β), inflammatory mediators (COX‐II and iNOs) and elevated oxidative stress (Nrf‐2 and HO‐1).  相似文献   

18.
19.
The onset of human labour resembles inflammation with increased synthesis of prostaglandins and cytokines. There is evidence from rodent models for an important role for nuclear factor‐κB (NF‐κB) activity in myometrium which both up‐regulates contraction‐associated proteins and antagonizes the relaxatory effects of progesterone. Here we show that in the human, although there are no differences in expression of NF‐κB p65, or IκB‐α between upper‐ or lower‐segment myometrium or before or after labour, there is nuclear localization of serine‐256‐phospho‐p65 and serine‐536‐phospho‐p65 in both upper‐ and lower‐segment myometrium both before and after the onset of labour at term. This shows that NF‐κB is active in both upper and lower segment prior to the onset of labour at term. To identify the range of genes regulated by NF‐κB we overexpressed p65 in myocytes in culture. This led to NF‐κB activation identical to that seen following interleukin (IL)‐1β stimulation, including phosphorylation and nuclear translocation of p65 and p50. cDNA microarray analysis showed that NF‐κB increased expression of 38 genes principally related to immunity and inflammation. IL‐1β stimulation also resulted in an increase in the expression of the same genes. Transfection with siRNA against p65 abolished the response to IL‐1β proving a central role for NF‐κB. We conclude that NF‐κB is active in myocytes in both the upper and lower segment of the uterus prior to the onset of labour at term and principally regulates a group of immune/inflammation associated genes, demonstrating that myocytes can act as immune as well as contractile cells.  相似文献   

20.
Sympathetic activation after myocardial infarction (MI) leads to ventricular arrhythmias (VAs), which can result in sudden cardiac death (SCD). The toll‐like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor‐kappa B (NF‐kB) axis within the hypothalamic paraventricular nucleus (PVN), a cardiac‐neural sympathetic nerve centre, plays an important role in causing VAs. An MI rat model and a PVN‐TLR4 knockdown model were constructed. The levels of protein were detected by Western blotting and immunofluorescence, and localizations were visualized by multiple immunofluorescence staining. Central and peripheral sympathetic activation was visualized by immunohistochemistry for c‐fos protein, renal sympathetic nerve activity (RSNA) measurement, heart rate variability (HRV) analysis and norepinephrine (NE) level detection in serum and myocardial tissue measured by ELISA. The arrhythmia scores were measured by programmed electrical stimulation (PES), and cardiac function was detected by the pressure–volume loop (P‐V loop). The levels of TLR4 and MyD88 and the nuclear translocation of NF‐kB within the PVN were increased after MI, while sympathetic activation and arrhythmia scores were increased and cardiac function was decreased. However, inhibition of TLR4 significantly reversed these conditions. PVN‐mediated sympathetic activation via the TLR4/MyD88/NF‐kB axis ultimately leads to the development of VAs after MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号