首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strategies to improve retinal progenitor cell (RPC) capacity to yield proliferative and multipotent pools of cells that can efficiently differentiate into retinal neurons, including photoreceptors, could be vital for cell therapy in retinal degenerative diseases. In this study, we found that insulin-like growth factor-1 (IGF-1) plays a role in the regulation of proliferation and differentiation of RPCs. Our results show that IGF-1 promotes RPC proliferation via IGF-1 receptors (IGF-1Rs), stimulating increased phosphorylation in the PI3K/Akt and MAPK/Erk pathways. An inhibitor experiment revealed that IGF-1-induced RPC proliferation was inhibited when the PI3K/Akt and MAPK/Erk pathways were blocked. Furthermore, under the condition of differentiation, IGF-1-pretreated RPCs prefer to differentiate into retinal neurons, including photoreceptors, in vitro, which is crucial for visual formation and visual restoration. These results demonstrate that IGF-1 accelerates the proliferation of RPCs and IGF-1 pretreated RPCs may have shown an increased potential for retinal neuron differentiation, providing a novel strategy for regulating the proliferation and differentiation of retinal progenitors in vitro and shedding light upon the application of RPCs in retinal cell therapy.  相似文献   

2.

Background aims

Retinal progenitor cells (RPCs) are a promising cell therapy treatment for retinal degenerative diseases. However, problems with limited proliferation ability and differentiation preference toward glia rather than neurons restrict the clinical application of these RPCs. The extracellular matrix (ECM) has been recognized to provide an appropriate microenvironment to support stem cell adhesion and direct cell behaviors, such as self-renewal and differentiation.

Methods

In this study, decellularized matrix of adipose-derived mesenchymal stromal cells (DMA) was manufactured using a chemical agent method (0.5% ammonium hydroxide Triton + 20?mmol/L NH4OH) in combination with a biological agent method (DNase solution), and the resulting DMA were evaluated by scanning electron microscopy (SEM) and immunocytochemistry. The effect of DMA on RPC proliferation and differentiation was evaluated by quantitative polymerase chain reaction, Western blot and immunocytochemistry analysis.

Results

DMA was successfully fabricated, as demonstrated by SEM and immunocytochemistry. Compared with tissue culture plates, DMA may effectively enhance the proliferation of RPCs by activating Akt and Erk phosphorylation; when the two pathways were blocked, the promoting effect was reversed. Moreover, DMA promoted the differentiation of RPCs toward retinal neurons, especially rhodopsin- and recoverin-positive photoreceptors, which is the most interesting class of cells for retinal degeneration treatment.

Conclusions

These results indicate that DMA has important roles in governing RPC proliferation and differentiation and may contribute to the application of RPCs in treating retinal degenerative diseases.  相似文献   

3.
A growing number of studies are evaluating retinal progenitor cell (RPC) transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR) and evaluated whether exposure to epidermal growth factor (EGF) can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.  相似文献   

4.
Epidermal growth factor (EGF) family ligands have been implicated in cardiovascular diseases because of their enhanced expression in vascular lesions and their promoting effects on growth and migration of vascular smooth muscle cells (VSMCs). Betacellulin (BTC), a novel EGF family ligand, has been shown to be expressed in atherosclerotic lesions and to be a potent growth factor of VSMCs. However, the molecular mechanisms downstream of BTC involved in mediating vascular remodeling remain largely unknown. Therefore, the aim of this study was to examine the effects of BTC on signal transduction, growth, and migration in VSMCs. We found that BTC stimulated phosphorylation of EGF receptor (EGFR) at Tyr1068, which was completely blocked by an EGFR kinase inhibitor, AG-1478. BTC also phosphorylated ErbB2 at Tyr877, Tyr1112, and Tyr1248 and induced association of ErbB2 with EGFR, suggesting their heterodimerization in VSMCs. In postreceptor signal transduction, BTC stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, Akt, and p38 mitogen-activated protein kinase (MAPK). Moreover, BTC stimulated proliferation and migration of VSMCs. ERK and Akt inhibitors suppressed migration markedly and proliferation partially, whereas the p38 inhibitor suppressed migration partially but not proliferation. In addition, we found the presence of endogenous BTC in conditioned medium of VSMCs and an increase of BTC on angiotensin II stimulation. In summary, BTC promotes growth and migration of VSMCs through activation of EGFR, ErbB2, and downstream serine/threonine kinases. Together with the expression and processing of endogenous BTC in VSMCs, our results suggest a critical involvement of BTC in vascular remodeling. epidermal growth factor receptors; ErbB2; migration; signal transduction  相似文献   

5.
Epidermal growth factor (EGF) is a common mitogenic factor that stimulates the proliferation of different types of cells, especially fibroblasts and epithelial cells. EGF activates the EGF receptor (EGFR/ErbB), which initiates, in turn, intracellular signaling. EGFR family is also expressed in neurons of the hippocampus, cerebellum, and cerebral cortex in addition to other regions of the central nervous system (CNS). EGF enhances the differentiation, maturation and survival of a variety of neurons. Transgenic mice lacking the EGFR developed neurodegenerative disease and die within the first month of birth. EGF acts not only on mitotic cells but also on postmitotic neurons, and many studies have indicated that EGF has neuromodulatory effect on various types of neurons in the CNS. This review highlights some of the major recent findings pertinent to the EGF and ErbB family with special references to elucidating their roles in the regulation of neurogenesis, signal transduction and trafficking and degradation.  相似文献   

6.
The four receptor tyrosine kinases of the ErbB family play essential roles in several physiological processes and have also been implicated in tumor generation and/or progression. Activation of ErbB1/EGFR is mainly triggered by epidermal growth factor (EGF) and other related ligands, while activation of ErbB2, ErbB3, and ErbB4 receptors occurs by binding to another set of EGF-like ligands termed neuregulins (NRGs). Here we show that the Erk5 mitogen-activated protein kinase (MAPK) pathway participates in NRG signal transduction. In MCF7 cells, NRG activated Erk5 in a time- and dose-dependent fashion. The action of NRG on Erk5 was dependent on the kinase activity of ErbB receptors but was independent of Ras. Expression in MCF7 cells of a dominant negative form of Erk5 resulted in a significant decrease in NRG-induced proliferation of MCF7 cells. Analysis of Erk5 in several human tumor cell lines indicated that a constitutively active form of this kinase was present in the BT474 and SKBR3 cell lines, which also expressed activated forms of ErbB2, ErbB3, and ErbB4. Treatments aimed at decreasing the activity of these receptors caused Erk5 inactivation, indicating that the active form of Erk5 present in BT474 and SKBR3 cells was due to a persistent positive stimulus originating at the ErbB receptors. In BT474 cells expression of the dominant negative form of Erk5 resulted in reduced proliferation, indicating that in these cells Erk5 was also involved in the control of proliferation. Taken together, these results suggest that Erk5 may play a role in the regulation of cell proliferation by NRG receptors and indicate that constitutively active NRG receptors may induce proliferative responses in cancer cells through this MAPK pathway.  相似文献   

7.
Betacellulin (BTC) is one of the members of the epidermal growth factor (EGF) ligand family of ErbB receptor tyrosine kinases. It is a differentiation factor as well as a potent mitogen. BTC promotes the differentiation of pancreatic acinar-derived AR42J cells into insulin-producing cells. It independently and preferentially binds to two type I tyrosine kinase receptors, the EGF receptor (ErbB1) and ErbB4. However, the physiochemical characteristics of BTC that are responsible for its preferential binding to these two receptors have not been fully defined. In this study, to investigate the essential amino acid residues of BTC for binding to the two receptors, we introduced point mutations into the EGF domain of BTC employing error-prone PCR. The receptor binding abilities of 190 mutants expressed in Escherichia coli were assessed by enzyme immunoassay. Replacement of the glutamic acid residue at position 88 with a lysine residue in BTC was found to produce a significant loss of affinity for binding to ErbB1, while the affinity of binding to ErbB4 was unchanged. In addition, the mutant of BTC-E/88/K showed less growth-promoting activity on BALB/c 3T3 cells compared with that of the wild-type BTC protein. Interestingly, the BTC mutant protein promoted differentiation of pancreatic acinar AR42J cells at a high frequency into insulin-producing cells compared with AR42J cells that were treated with wild-type BTC protein. These results indicate the possibility of designing BTC mutants, which have an activity of inducing differentiation only, without facilitating growth promotion.  相似文献   

8.
9.
Cellular signaling via epidermal growth factor (EGF) and EGF-like ligands can determine cell fate and behavior. Osteoblasts, which are responsible for forming and mineralizing osteoid, express EGF receptors and alter rates of proliferation and differentiation in response to EGF receptor activation. Transgenic mice over-expressing the EGF-like ligand betacellulin (BTC) exhibit increased cortical bone deposition; however, because the transgene is ubiquitously expressed in these mice, the identity of cells affected by BTC and responsible for increased cortical bone thickness remains unknown. We have therefore examined the influence of BTC upon mesenchymal stem cell (MSC) and pre-osteoblast differentiation and proliferation. BTC decreases the expression of osteogenic markers in both MSCs and pre-osteoblasts; interestingly, increases in proliferation require hypoxia-inducible factor-alpha (HIF-α), as an HIF antagonist prevents BTC-driven proliferation. Both MSCs and pre-osteoblasts express EGF receptors ErbB1, ErbB2, and ErbB3, with no change in expression under osteogenic differentiation. These are the first data that demonstrate an influence of BTC upon MSCs and the first to implicate HIF-α in BTC-mediated proliferation.  相似文献   

10.
Membrane receptor intracellular trafficking and signalling are frequently altered in cancers. Our aim was to investigate whether clathrin‐dependent trafficking modulates signalling of the ErbB receptor family in response to amphiregulin (AR), EGF, heparin‐binding EGF‐like growth factor (HB‐EGF) and heregulin‐1β (HRG). Experiments were performed using three hepatocellular carcinoma (HCC) cell lines, Hep3B, HepG2 and PLC/PRF/5, expressing various levels of EGFR, ErbB2 and ErbB3. Inhibition of clathrin‐mediated endocytosis (CME), by down‐regulating clathrin heavy chain expression, resulted in a cell‐ and ligand‐specific pattern of phosphorylation of the ErbB receptors and their downstream effectors. Clathrin down‐regulation significantly decreased the ratio between phosphorylated EGFR (pEGFR) and total EGFR in all cell lines when stimulated with AR, EGF, HB‐EGF or HRG, except in HRG‐stimulated Hep3B cells in which pEGFR was not detectable. The ratio between phosphorylated ErbB2 and total ErbB2 was significantly decreased in clathrin down‐regulated Hep3B cells stimulated with any of the ligands, and in HRG‐stimulated PLC/PRF/5 cells. The ratio between phosphorylated ErbB3 and total ErbB3 significantly decreased in clathrin down‐regulated cell lines upon stimulation with EGF or HB‐EGF. STAT3 phosphorylation levels significantly increased in all cell lines irrespective of stimulation, while that of AKT remained unchanged, except in AR‐stimulated Hep3B and HepG2 cells in which pAKT was significantly decreased. Finally, ERK phosphorylation was insensitive to clathrin inhibition. Altogether, our observations indicate that clathrin regulation of ErbB signalling in HCC is a complex process that likely depends on the expression of ErbB family members and on the autocrine/paracrine secretion of their ligands in the tumour environment.  相似文献   

11.
Interleukin-3 (IL-3)-dependent murine 32D cells do not detectably express epidermal growth factor receptors (EGFRs) and do not proliferate in response to EGF, heregulin (HRG) or other known EGF-like ligands. Here, we report that EGF specifically binds to and can be crosslinked to 32D transfectants co-expressing ErbB2 and ErbB3 (32D.E2/E3), but not to transfectants expressing either ErbB2 or ErbB3 individually. [125I]EGF-crosslinked species detected in 32D. E2/E3 cells were displaced by HRG and betacellulin (BTC) but not by other EGF-like ligands that were analyzed. EGF, BTC and HRG also induced receptor tyrosine phosphorylation, activation of downstream signaling molecules and proliferation of 32D.E2/E3 cells. 32D transfectants were also generated which expressed an ErbB3-EGFR chimera alone (32D.E3-E1) or in combination with ErbB2 (32D. E2/E3-E1). While HRG stimulation of 32D.E3-E1 cells resulted in DNA synthesis and receptor phosphorylation, EGF and BTC were inactive. However, EGF and BTC were as effective as HRG in mediating signaling when ErbB2 was co-expressed with the chimera in the 32D.E2/E3-E1 transfectant. These results provide evidence that ErbB2/ErbB3 binding sites for EGF and BTC are formed by a previously undescribed mechanism that requires co-expression of two distinct receptors. Additional data utilizing MDA MB134 human breast carcinoma cells, which naturally express ErbB2 and ErbB3 in the absence of EGFRs, supported the results obtained employing 32D cells and suggest that EGF and BTC may contribute to the progression of carcinomas that co-express ErbB2 and ErbB3.  相似文献   

12.
The present studies were conducted to establish interactions between transforming growth factor (TGF)-beta and the epidermal growth factor (EGF) family members, TGFalpha and betacellulin (BTC), relative to proliferation and differentiation of granulosa cells in hen ovarian follicles. Results presented demonstrate expression of TGFbeta isoforms, plus TGFalpha, BTC, and ErbB receptors in prehierarchal follicles, thus establishing the potential for autocrine/paracrine signaling and cross-talk within granulosa cells at the onset of differentiation. Treatment with TGFalpha or BTC increases levels of TGFbeta1 mRNA in undifferentiated granulosa cells, while the selective inhibitor of mitogen activated protein kinase signaling, U0126, reverses these effects. Moreover, TGFbeta1 attenuates c-myc mRNA expression and granulosa cell proliferation, while TGFalpha blocks both these inhibitory effects. Collectively, these data provide evidence that EGF family ligands regulate both the expression and biological actions of TGFbeta1 in hen granulosa cells, and indicate that the timely interaction of these opposing factors is an important modulator of both granulosa cell proliferation and differentiation.  相似文献   

13.
Superior colliculus (SC) is the target of retinal neurons, allowing them to form connections. Cultured stem cells/progenitors can potentially be used as donor tissue to reconstruct degenerated retina including perhaps replacing lost ganglion cells in glaucoma. In which case, it will be essential for these cells to integrate with the central nervous system targets. Here, we have investigated if the mid-brain region containing superior colliculus (SC) provides a permissive environment for the survival and differentiation of neural progenitors, including retinal progenitor cells propagated in cultures. Neural (NPCs) and retinal progenitor cells (RPCs) from green fluorescent protein (GFP) transgenic mice were cultured. Passage two through four neural and retinal progenitor cells were subsequently cocultured with the SC organotypic slices and maintained in culture for 17 and eight days respectively. Differentiation of the neurons was studied by immunocytochemistry for retinotypic neuronal markers. Retinal progenitor cells cocultured with SC slices were able to differentiate into various neuronal morphologies. Some cocultured progenitor cells differentiated into neurons as suggested by class III β tubulin immunoreactivity. In addition, specific retinotypic neuronal differentiation of RPC was detected by immunoreactivity for calbindin and PKC. SC provides a permissive environment that supports survival and differentiation of the progenitor cells.  相似文献   

14.
Neural progenitor cells (NPCs) are sensitive to epidermal growth factor (EGF), which is essential for their self-renewal. Recently we showed that high level of connexin43 (Cx43) expression and gap junctional intercellular communication (GJIC) are also required to maintain NPCs in a proliferative state. In this study the connection between EGF/EGFR signalling and Cx43 expression was investigated during proliferation and differentiation of cultured ReNcell VM197 human NPCs. We found that EGF, but not basic fibroblast growth factor (bFGF), strongly stimulated both Cx43 expression and GJIC in proliferating cells. This stimulatory effect was blocked by AG1478, a specific inhibitor for EGFR kinase. Notably, knockdown of Cx43 strongly inhibited the cell proliferation promoted by EGF/EGFR signalling. High sensitivity to EGF was still maintained in differentiated NPCs. Administration of EGF to differentiating cells led to a pronounced increase (9-fold) of Cx43 expression and a re-induction of proliferation. This strong impact of EGF was found to correlate with a surprisingly massive 60-fold up-regulation of EGFR expression in differentiated cells. Our data argue for a mutual regulation between Cx43 expression and EGF/EGFR signalling during self-renewal and differentiation of NPCs.  相似文献   

15.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

16.
Fu X  Sun H  Klein WH  Mu X 《Developmental biology》2006,299(2):424-437
During vertebrate retinal development, the seven retinal cell types differentiate sequentially from a single population of retinal progenitor cells (RPCs) and organize themselves into a distinct laminar structure. The purpose of this study was to determine whether beta-catenin, which functions both as a nuclear effector for the canonical Wnt signaling pathway and as a regulator of cell adhesion, is required for retinal neurogenesis or lamination. We used the Cre-loxP system to either eliminate beta-catenin or to express a constitutively active form during retinal neurogenesis. Eliminating beta-catenin did not affect cell differentiation, but did result in the loss of the radial arrangement of RPCs and caused abnormal migration of differentiated neurons. As a result, the laminar structure was massively disrupted in beta-catenin-null retinas, although all retinal cell types still formed. In contrast to other neural tissues, eliminating beta-catenin did not significantly reduce the proliferation rate of RPCs; likewise, activating beta-catenin ectopically in RPCs did not result in overproliferation, but loss of neural retinal identity. These results indicate that beta-catenin is essential during retinal neurogenesis as a regulator of cell adhesion but not as a nuclear effector of the canonical Wnt signaling pathway. The results further imply that retinal lamination and retinal cell differentiation are genetically separable processes.  相似文献   

17.
18.
The vertebrate retina develops from an amorphous sheet of dividing retinal progenitor cells (RPCs) through a sequential process that culminates in an exquisitely patterned neural tissue. A current model for retinal development posits that sequential cell-type differentiation is the result of changes in the intrinsic competence state of multipotent RPCs as they advance in time and that the intrinsic changes are influenced by continuous changes in the extracellular environment. Although several studies support the proposition that newly differentiated cells alter the extrinsic state of the developing retina, it is still far from clear what role they play in modifying the extracellular environment and in influencing the properties of RPCs. Here, we specifically ablate retinal ganglion cells (RGCs) as they differentiate, and we determine the impact of RGC absence on retinal development. We find that RGCs are not essential for changing the competence of RPCs, but they are necessary for maintaining sufficient numbers of RPCs by regulating cell proliferation via growth factors. Intrinsic rather than extrinsic factors are likely to play the critical roles in determining retinal cell fate.  相似文献   

19.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号