首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary skeletal muscle myoblasts have a limited proliferative capacity in cell culture and cease to proliferate after several passages. We examined the effects of several oncogenes on the immortalization and differentiation of primary cultures of rat skeletal muscle myoblasts. Retroviruses containing a SV40 large T antigen (LT) gene very efficiently immortalize myogenic cells. The immortalized cell lines retain a very high differentiation capacity and form, in the appropriate culture conditions, a very dense network of muscle fibers. As in primary culture, cell fusion is associated with the synthesis of large amounts of muscle-specific proteins. However, unlike normal myoblasts (and previously established myogenic cell lines), nuclei in the multinucleated fibers of SV40-immortalized cells synthesize DNA and enter mitosis. Thus, withdrawal from DNA synthesis is not obligatory for cell fusion and biochemical differentiation. Using a retrovirus coding for a temperature-sensitive SV40 LT, myogenic cell lines were produced in which the SV40 LT could be inactivated by a shift from 33 degrees C to 39 degrees C. The inactivation of LT induced massive cell fusion and synthesis of muscle proteins. The nuclei in those fibers did not synthesize DNA, nor did they undergo mitosis. This approach enabled the reproducible establishment of myogenic cell lines from very small populations of myoblasts or single primary myogenic clones. Activated p53 also readily immortalized cells in primary muscle cultures, however the cells of eight out of the nine cell lines isolated had a fibroblastic morphology and could not be induced to form multinucleated fibers.  相似文献   

2.
Mouse cell lines were immortalized by introduction of specific immortalizing genes. Embryonic and adult animals and an embryonal stem cell line were used as a source of primary cells. The immortalizing genes were either introduced by DNA transfection or by ecotropic retrovirus transduction. Fibroblasts were obtained by expression of SV40 virus large T antigen (TAg). The properties of the resulting fibroblast cell lines were reproducible, independent of the donor mouse strains employed and the cells showed no transformed properties in vitro and did not form tumors in vivo. Endothelial cell lines were generated by Polyoma virus middle T antigen expression in primary embryonal cells. These cell lines consistently expressed relevant endothelial cell surface markers. Since the expression of the immortalizing genes was expected to strongly influence the cellular characteristics fibroblastoid cells were reversibly immortalized by using a vector that allows conditional expression of the TAg. Under inducing conditions, these cells exhibited properties that were highly similar to the properties of constitutively immortalized cells. In the absence of TAg expression, cell proliferation stops. Cell growth is resumed when TAg expression is restored. Gene expression profiling indicates that TAg influences the expression levels of more than 1000 genes that are involved in diverse cellular processes. The data show that conditionally immortalized cell lines have several advantageous properties over constitutively immortalized cells.  相似文献   

3.
We have compared the effect of two different procedures, equally effective in preventing muscle cell fusion in culture, on the development of the sarcotubular system in rat muscle cells. Whereas in myoblasts grown in low Ca++ medium the T system was poorly developed and diadic or triadic couplings between T tubules and sarcoplasmic reticulum were rare, in cytochalasin B-treated myoblasts the development of the sarcotubular system was comparable to that seen in myotubes of the same age. We conclude that (a) muscle cell fusion is not essential for the development of the sarcotubular system, and (b) procedures used to prevent cell fusion in vitro may affect directly muscle cell differentiation by a process independent of the fusion block.  相似文献   

4.
The aim of this study was to investigate a new method to enhance the efficiency to create mammalian cell lines. Cell immortalization was achieved by intranuclear microinjection of a recombinant DNA construct composed of a constitutive promoter controlling the genes encoding immortalizing proteins; the sequences coding for the large T and small t antigens were fused downstream of regulatory elements from the vimentin gene, the activation of which characterizes the vast majority of cells growing in vitro. Data show that the efficiency of the immortalizing procedures using the SV40 early genes could be enhanced by the control elements derived from the human vimentin (HuVim) 5' sequences that contained nucleotides -878 to +93 from the CAP site. This HuVim 830-T/t recombinant was used to create cell lines from numerous primary cultures of different origins: rabbit, porcine and human endothelial cells, rabbit and bovine epithelial cells. A set of large T-expressing cells was derived, and these cells retained characteristics of differential cells: binding of Ulex europaeus lectin and synthesis of Factor VIII for human endothelial cells; network of cytokeratin for bovine oviductal cells and rabbit mammary cells.  相似文献   

5.
Traditionally, muscle cell lines are cultured on glass coverslips and differentiated to investigate myoblast fusion and differentiation. Efficient differentiation of myoblasts produces a dense network of myotubes with the correct organisation for contraction. Here we have tested the ability of artificially generated, precisely controlled peptide surfaces to enhance the efficiency of myoblast differentiation. We focused on specific short peptides from α-laminin-2 (IKVSV, VQLRNGFPYFSY and GLLFYMARINHA) as well as residues 15–155 from FGF1. We tested if these peptides in isolation, and/or in combination promoted muscle differentiation in culture, by promoting fusion and/or by improving sarcomere organisation. The majority of these peptides promoted fusion and differentiation in two different mouse myogenic cell lines and in primary human myoblasts. The additive effects of all four peptides gave the best results for both mouse cell lines tested, while primary human cell cultures differentiated equally well on most peptide surfaces tested. These data show that a mixture of short biomimetic peptides can reliably promote differentiation in mouse and human myoblasts.  相似文献   

6.
7.
8.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

9.
The temperature-sensitive mutant of the SV40 virus large T antigen (TAg) tsA58 is frequently employed for the conditional immortalization of primary cells. By increasing the temperature to 39 degrees C, the activity of the mutant TAg is reduced and the status of such cells may then resemble more closely that of primary cells. As an alternative, we used a novel immortalization vector with a tetracycline-regulated expression of the wild-type TAg. This enabled us to investigate the effects of the immortalizing gene expression and of temperature shifts independently of each other. Even for wild-type TAg-derived cell lines the elevated temperatures led to various clone-dependent phenotypes. This suggests that in freshly established cell lines temperature-sensitive growth phenotypes can arise spontaneously and independently of a temperature-sensitive immortalizing gene. Similar effects were observed with spontaneously immortalized cells. On the other hand, not all of the ts-TAg-derived cell lines were proliferation arrested at the non-permissive temperature. Therefore, the assumption that temperature-sensitive growth is solely due to the ts-TAg must be verified for each ts-TAg-derived cell line individually. This complexity could be avoided by using the autoregulatory immortalization vector expressing the wild-type TAg.  相似文献   

10.
This investigation was conducted to assess the effects of mouse serum on chick skeletal muscle cell differentiation. In light of earlier findings of altered membrane phospholipid metabolism following mouse serum treatment of Friend erythroleukemic and chick chondrogenic cells, it was of interest to determine whether similar changes would modulate the fusion of mononucleated myoblasts, which is necessary for the formation of multinucleated skeletal muscle fibers. When mouse serum is added to low density cultures of enriched chick myoblasts shortly following cell attachment to the substratum, fusion is inhibited and neutral lipid accumulation ensues. There is an early inhibitory effect on DNA synthesis but not on protein synthesis. There is no increase in the uptake of 2-deoxyglucose following insulin stimulation of the cells, which suggests that while the cells are accumulating large amounts of lipid, they are not being converted into typical adipocytes. Finally, even in cultures of mouse serum-treated cells that undergo significant fusion, one observes thinner myotubes that do not spontaneously contract as do those of control cultures, as well as a disorganization of fluorescently stained actin and myosin myofilaments. These findings demonstrate that mouse serum acts in a dose-dependent manner, is not cytotoxic to the cells, but is capable of modulating normal developmental events of myoblasts as reported for other cell and tissue types.  相似文献   

11.
12.
The growth of muscle fibers during late development as well as in regeneration following muscle injury is the result of the proliferation and differentiation of satellite cells. However, all human cells, including satellite cells, show a limit in their proliferation. In order to define a cellular system with enhanced proliferative capacity, human satellite cells were transfected with a construct containing large T antigen from SV40 under the control of the human vimentin promoter. Vimentin is normally expressed during proliferation, and its expression is down-regulated as differentiation proceeds. In transfected cells, the construct is regulated like the endogenous vimentin gene. The effect of exogenous T antigen expression on both the proliferation and differentiation of human satellite cells was investigated. T antigen expression reduced the doubling time of human satellite cells from 36 to 20 h and increased the final proliferative capacity from 46 to 69 mean population doublings. When differentiation was triggered, although T antigen did not prevent the formation of myotubes, fusion was delayed. A similar delay was observed in the appearance of myogenin protein, one of the HLH regulatory factors, but not in the corresponding mRNA. Finally, T antigen has an effect on adult myosin isoform expression, since both adult slow and fast isoforms were only detected in myotubes negative for T antigen. These results led us to propose a model of the possible interactions between T antigen and muscle-specific factors.  相似文献   

13.
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles.  相似文献   

14.
Laminin-2 is a component of skeletal and cardiac basal lamina expressed in normal mouse and human. Laminin alpha2 chain (LAMA2), however, is absent from muscles of some congenital muscular dystrophy patients and the dystrophia muscularis (dy/dy) mouse model. LAMA2 restoration was investigated following cell transplantation in vivo in dy/dy mouse. Allogeneic primary muscle cell cultures expressing the beta- galactosidase transgene under control of a muscular promoter, or histocompatible primary muscle cell cultures, were transplanted into dy/dy mouse muscles. FK506 immunosuppression was used in noncompatible models. All transplanted animals expressed LAMA2 in these immunologically-controlled models, and the degrees of LAMA2 restoration were shown to depend on the age of the animal at transplantation, on muscle pretreatment, and on duration time after transplantation in some cases. LAMA2 did not always colocalize with new or hybrid muscle fibers formed by the fusion of donor myoblasts. LAMA2 deposition around muscle fibers was often segmental and seemed to radiate from the center to the periphery of the injection site. Allogeneic conditionally immortalized pure myogenic cells expressing the beta-galactosidase transgene were characterized in vitro and in vivo. When injected into FK506- immunosuppressed dy/dy mice, these cells formed new or hybrid muscle fibers but essentially did not express LAMA2 in vivo. These data show that partial LAMA2 restoration is achieved in LAMA2-deficient dy/dy mouse by primary muscle cell culture transplantation. However, not all myoblasts, or myoblasts alone, or the muscle fibers they form are capable of LAMA2 secretion and deposition in vivo.  相似文献   

15.
Summary— Thirty endometrial biopsies were cultured in order to separate stromal and epithelial cells. Using epidermal growth factor (EGF), cortisol, cholera toxin, insulin with 5% horse serum for epithelial cells or a medium with 20% fetal calf serum for stromal cells, we could specifically enrich endometrial culture in epithelial or stromal cells and culture them for 1 or 2 months. These cultures retained the phenotypic characteristics of epithelial (cytokeratins, mucin HMFG 1) and stromal (vimentin, smooth muscle actin, desmin) lineage by immunostaining analysis. Epithelial and stromal cultures from one individual were respectively immortalized by the SV 40 large T antigen. The immortalized cell lines kept the phenotype of the normal cells from which they derived.  相似文献   

16.
The tendency of the ovarian surface epithelium (OSE) to undergo metaplastic and morphogenetic changes during the life cycle, at variance with the adjacent peritoneal mesothelial cells, suggests that its biology may be regulated by underlying ovarian stromal cues. However, little is known about the role that the ovarian stroma plays in the pathobiology of the OSE, largely because of the lack of a suitable in vitro model. Here, we describe the establishment and characterization of conditionally immortalized ovarian stromal and surface epithelial cell lines from H-2K(b)-tsA58 transgenic mice that carry the thermolabile mutant of SV-40 large T antigen under the control of an interferon-gamma (IFN-gamma)-inducible promoter. These cells express functional T antigens, grow continuously under permissive conditions at 33 degrees C in the presence of IFN-gamma, and stop dividing when the activity and expression of the tumor antigen is suppressed by restrictive conditions without IFN-gamma at 39 degrees C. Morphological, immunohistochemical, and ultrastructural analyses show that conditionally immortal OSE cells form cobblestone-like monolayers, express cytokeratin and vimentin, contain several microvilli, and develop tight junctions, whereas stromal cells are spindle-like, express vimentin but not cytokeratin, and contain rare microvilli, thus exhibiting epithelial and stromal phenotypes, respectively. At variance with the reported behavior of rat epithelial cells, conditionally immortal mouse epithelial cells are not spontaneously transformed after continuous culture in vitro. More importantly, conditioned media from stromal cells cultured under permissive conditions increase the specific activity of the endogenous estrogen receptor in BG-1 human ovarian epithelial cancer cells and promote these cells' anchorage-independent growth, suggesting the paracrine influence of a stromal factor. In addition, stromal cells cultured under restrictive conditions retain this growth-stimulatory activity, which, therefore, appears to be independent of T antigen expression. These established cell lines should provide a useful in vitro model system for studying the role of cellular interactions in OSE cell growth and tumorigenesis.  相似文献   

17.
The recombinant retrovirus J2, which contains the v-raf/mil and v-myc oncogenes, was used to immortalize mouse splenic macrophages that had been cloned in soft agar. When added to freshly harvested colonies, J2 failed to yield cell lines but it immortalized up to 30% of the clones if they had been maintained for at least 4 months in medium containing colony-stimulating factor 1 (CSF-1). All of the cell lines grew in agar in a CSF-1-independent manner, and they produced tumors in nude and syngeneic mice. The cell lines were judged to be macrophage based on morphological criteria and because they secreted lysozyme, were phagocytic for antibody-coated particles, and expressed both the Mac-1 antigen and the CSF-1 receptor. The cell lines could be divided into three groups based on their expression of Ia and their ability to present an antigen to a T-cell hybridoma. The majority of the lines did not constitutively express Ia or present antigen, but a lymphokine did induce Ia in all of the lines, with most of them also acquiring antigen-presenting activity. However, a small proportion of lymphokine-treated lines continued to lack antigen-presenting activity despite their ability to express Ia. The third and smallest group of cell lines constitutively expressed both Ia and antigen-presenting activity. These results show that the J2 recombinant retrovirus is a useful means of immortalizing functionally distinct populations of cloned splenic macrophages.  相似文献   

18.
The Clara cell is believed to be the progenitor of the peripheral airway epithelium, and it produces the surfactant proteins SP-A and SP-B, in addition to the 10-kDa Clara cell secretory protein (CCSP or CC10). To date, attempts to develop Clara cell lines have been unsuccessful. Most such attempts have involved the in vitro insertion of a transforming viral oncogene. We have reported previously the characterization of a differentiated conditionally immortalized murine lung Type II epithelial cell line, T7, from the H-2Kb-tsA58 transgenic mouse. We have also used this mouse model to derive Clara cell lines. In this model, the need for in vitro gene insertion is circumvented by the creation of a transgene, in which the large tumor antigen of a temperature-sensitive strain (tsA58) of the simian virus 40 (SV40) is fused with the major histocompatibility complex promoter H-2Kb. The promoter is active in a wide range of tissues and is induced by interferons (IFN). From the lungs of animals harboring the hybrid construct, we isolated and characterized Clara cells. The cells contain dense secretory granules and mitochondria typical of Clara cells, and express SP-A, SP-B, SP-D, and the Clara cell secretory protein, CC10. Withdrawal of the IFN and elevation of the incubation temperature permit normal cell differentiation similar to that of Clara cells in vivo. This cell line should be very useful for the investigation of normal Clara cell function and gene expression.  相似文献   

19.
We have shown previously (A. Sobel and A. H. Tashjian, Jr. (1983). J. Biol. Chem. 258, 10,312-10,324;A. Sobel and M.C. Boutterin (1985). Neurochem. Int. 7, 995-1006) that, in the pituitary-derived GH4C1 cells, thyrotropin-releasing hormone or the tumor promoter TPA (12-O-tetradecanoylphorbol-13-acetate) stimulates the phosphorylation of two sets of cytoplasmic proteins related to the regulation of prolactin synthesis and release, respectively. Interestingly, phosphoproteins with identical electrophoretic migration properties on two-dimensional gels were detected in cultured neonate or adult mouse muscle cells and in the L6 and C2 myogenic cell lines. In addition TPA, which is known to have many actions on muscle cell functions, proliferation, and differentiation, stimulated the phosphorylation of these same proteins in myoblasts in culture. After fusion of the proliferating myoblasts into differentiated myotubes, this TPA-induced stimulation was strongly reduced in normal muscle cell cultures where some mononucleate muscle and non-muscle cells remained present. It was totally abolished in the homogeneous L6 and C2 cell lines. These observations suggest that the same phosphoproteins may be related to the intracellular mechanisms involved in the transduction of extracellular regulatory signals in such distinct differentiated environments as those of pituitary and muscle cells. In muscle cells themselves, the regulation of the phosphorylation of these proteins is function of the cell's state of differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号