首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of a solid-state (31)P nuclear magnetic resonance (NMR) spectroscopic investigation of the acidocalcisome organelles from Trypanosoma brucei (bloodstream form), Trypanosoma cruzi and Leishmania major (insect forms). The spectra are characterized by a broad envelope of spinning sidebands having isotropic chemical shifts at approximately 0, -7 and -21 ppm. These resonances are assigned to orthophosphate, terminal (alpha) phosphates of polyphosphates and bridging (beta) phosphates of polyphosphates, respectively. The average polyphosphate chain length is approximately 3.3 phosphates. Similar results were obtained with whole L. major promastigotes. (31)P NMR spectra of living L. major promastigotes recorded under conventional solution NMR conditions had spectral intensities reduced with respect to solution-state NMR spectra of acid extracts, consistent with the invisibility of the solid-state phosphates. These results show that all three parasites contain large stores of condensed phosphates which can be visualized by using magic-angle spinning NMR techniques.  相似文献   

2.
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of 13C and 1H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time.  相似文献   

3.
Magic-angle spinning 1H and 13C nuclear magnetic resonance (NMR) have been employed to study 50%-by-weight aqueous dispersions of 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine (C[18]:C[10]PC) and 1-octadecanoyl-2-d19-decanoyl-PC (C[18]:C[10]PC-d19), mixed-chain phospholipids which can form interdigitated multibilayers. The 1H NMR linewidth for methyl protons of the choline headgroup has been used to monitor the liquid crystalline-to-gel (LC-to-G) phase transition and confirm variations between freezing and melting temperatures. Both 1H and 13C spin-lattice relaxation times indicate unusual restrictions on segmental reorientation at megahertz frequencies for C(18):C(10)PC as compared with symmetric-chain species in the LC state; nevertheless each chemical moiety of the mixed-chain phospholipid exhibits motional behavior that may be classified as liquidlike. Two-dimensional nuclear Overhauser spectroscopy (NOESY) on C(18):C(10)PC and C(18):C(10)PC-d19 reveals cross-peaks between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup, and several experimental and theoretical considerations argue against an interpretation based on spin diffusion. Using NMR relaxation times and NOESY connectivities along with a computational formalism for four-spin systems (Keepers, J. W., and T. L. James. 1984. J. Magn. Reson. 57:404-426), an estimate of 3.5 A is obtained for the average distance between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup. This finding is consistent with a degree of interdigitation similar to that proposed for organized assemblies of gel-state phosphatidylcholine molecules with widely disparate acyl-chain lengths (Hui, S. W., and C.-H. Huang. 1986. Biochemistry. 25:1330-1335); however, acyl-chain bendback or other intermolecular interactions may also contribute to the NOESY results. For multibilayers of C(18):C(10)PC in the gel phase, 13C chemical-shift measurements indicate that trans conformers predominate along both acyl chains. 13C Spin-lattice relaxation times confirm the unusual motional restrictions noted in the LC state; nevertheless, 13C and 1H rotating-frame relaxation times indicate that the interdigitated arrangement enhances chain or bilayer motions which occur at mid-kilohertz frequencies.  相似文献   

4.
We describe a simple protocol to achieve homonuclear J-decoupling in the indirect dimensions of multidimensional experiments, and to enhance spectral resolution of the backbone Calpha carbons in the 3D NCACX experiment. In the proposed protocol, the refocusing of the Calpha-CO homonuclear J-couplings is achieved by applying an off-resonance selective pi pulse to the CO spectral region in the middle of Calpha chemical shift evolution. As is commonly used in solution NMR, a compensatory echo period is used to refocus the unwanted chemical shift evolution of Calpha spins, which takes place during the off-resonance selective pulse. The experiments were carried out on the beta1 immunoglobulin binding domain of protein G (GB1). In GB1, such implementation results in significantly reduced line widths, and leads to an overall sensitivity enhancement.  相似文献   

5.
Given that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state.  相似文献   

6.
7.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

8.
Solid-state nuclear magnetic resonance spectroscopy was used to study the motion of 2H and 19F probes attached to the skeletal muscle actin residues Cys-10, Lys-61 and Cys-374. The probe resonances were observed in dried and hydrated G-actin, F-actin and F-actin-myosin subfragment-1 complexes. Restricted motion was exhibited by 19F probes attached to Cys-10 and Cys-374 on actin. The dynamics of probes attached to dry cysteine powder or F-actin were very similar and the binding of myosin had little effect indicating that the local probe environment imposes the major influence on motion in the solid state. Correlation times determined for the solid state probes indicated that they were undergoing some rapid internal motion in both G-actin and F-actin such as domain twisting. The probe size influenced the motion in G-actin and appeared to sense monomer rotation but not in F-actin where segmental mobility and intramonomer co-ordination appeared to dominate.  相似文献   

9.
  1. Download : Download high-res image (371KB)
  2. Download : Download full-size image
Highlights► Recent progress in biomolecular magic angle spinning solid state NMR is reviewed. ► MAS NMR is applied to study non-crystalline, non-soluble and high molecular-weight systems. ► New methods rely on sparse isotope enrichment, proton detection, fast spinning and signal enhancements. ► New structure calculations are based on 1H–1H restraints, paramagnetic effects and tensor analysis. ► Applications to protein aggregates, assemblies, fibrils, membrane proteins and enzymes are described.  相似文献   

10.
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D2O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at Hα and Hβ positions reduce spectral congestion in (1H,13C,15N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR.  相似文献   

11.
Solid-state nmr spectroscopy provides a robust method for investigating polypeptides that have been prepared by chemical synthesis and that are immobilized by strong interactions with solid surfaces or large macroscopic complexes. Solid-state nmr spectroscopy has been widely used to investigate membrane polypeptides or peptide aggregates such as amyloid fibrils. Whereas magic angle spinning solid-state nmr spectroscopy allows one to measure distances and dihedral angles with high accuracy, static membrane samples that are aligned with respect to the magnetic field direction allow one to determine the secondary structure of bound polypeptides and their orientation with respect to the bilayer normal. Peptide dynamics and the effect of polypeptides on the macroscopic phase preference of phospholipid membranes have been investigated in nonoriented samples. Investigations of the structure and topology of membrane channels, peptide antibiotics, signal sequences as well as model systems that allow one to dissect the interaction contributions in phospholipid membranes will be presented in greater detail.  相似文献   

12.
13.
P450 enzymes are of great interest for drug metabolism and as potential biocatalysts. Like most P450s, purified CYP3A4 is normally handled and stored in solution because lyophilization greatly reduces its activity. We show here that colyophilization of this enzyme with sucrose or trehalose, but not mannitol, crown ethers or cyclodextrins, allow recovery of full enzymatic activity after rehydration. Sorbitol was almost as efficient, with 85% retention of the original activity. We also show that similar protection is observed through colyophilization of CYP2D6 with trehalose. This procedure should greatly facilitate handling, storage, or use of these enzymes in anhydrous media.  相似文献   

14.
Magic angle spinning 13C NMR was used to study tobacco mosaic virus (TMV) in solution. Well-resolved 13C NMR spectra were obtained, in which several carbon resonances of amino acids of the TMV coat protein subunits that are not observable by conventional high-resolution NMR spectroscopy can be designed. RNA resonance were absent, however, in the magic angle spinning 13C NMR spectra. Since three different binding sites are available for each nucleotide of the RNA, this is probably due to a line broadening caused by distributions of isotropic chemical shift values. In 13C-enriched TM 13C-13C dipolar interactions also gave rise to line broadening. By suitable pulse techniques that discriminate carbon resonances on the basis of their T1 and T1 rho values, it was possible to select particular groups of carbon nuclei with characteristic motional properties. Magic angle spinning 13C NMR spectra obtained with these pulse techniques are extremely well resolved.  相似文献   

15.
Red wine concentrate has been reported to inhibit the catalytic activity of human recombinant cytochrome P450 (CYP) 3A4. Wine contains many polyphenolic compounds, including trans-resveratrol, which is also available commercially as a nutraceutical product. In the present study, we examined the in vitro effect of trans-resveratrol on human CYP3A catalytic activity by employing recombinant CYP3A4 and CYP3A5 as model enzymes and 7-benzyloxy-4-trifluoromethylcoumarin (BFC) as a CYP3A substrate. Trans-resveratrol inhibited BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 in a concentration-dependent manner. In each case, the inhibition was noncompetitive, as determined by Lineweaver-Burk and Dixon plots of the enzyme kinetic data. The apparent Ki values (mean +/- SEM) for the inhibition by trans-resveratrol of BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 were 10.2+/-1.1 microM and 14.7+/-0.3 microM, respectively. Preincubation of trans-resveratrol with NADPH and CYP3A4 or CYP3A5 for 10 or 15 min prior to initiation of substrate oxidation did not enhance the inhibitory effect, suggesting that this compound was not a mechanism-based inactivator of CYP3A4 or CYP3A5 when BFC was used as the substrate. Overall, our study provides the first demonstration that trans-resveratrol inhibits, in vitro, a substrate oxidation reaction catalyzed by human recombinant CYP3A4 and CYP3A5.  相似文献   

16.
The orientation of the insect antibiotic peptide cecropin A (CecA) in the phospholipid bilayer membrane was determined using (15)N solid-state NMR spectroscopy. Two peptide samples, each specifically labeled with (15)N at Val(11) or Ala(27), were synthesized by solid phase techniques. The peptides were incorporated into phospholipid bilayers, prepared from a mixture of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, and oriented on glass slides. The (15)N chemical shift solid-state NMR spectra from these uniaxially oriented samples display a single (15)N chemical shift frequency for each labeled residue. Both frequencies are near the upfield end of the (15)N chemical shift powder pattern, as expected for an alpha-helix with its long axis in the plane of the membrane and the NH bonds perpendicular to the direction of the magnetic field. These results support a mechanism of action in which CecA binds to and covers the membrane surface, thereby causing a general destabilization and leakiness of the lipid bilayer membrane. The data are discussed in relation to a proposed mechanism of membrane lysis and bacterial killing via an ion channel activity of CecA.  相似文献   

17.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

18.
31P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in 31P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid 31P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type 31P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

19.
Cisplatin [cis-diamminedichloridoplatinum(II)] is used in chemotherapy where platinum–DNA adducts initiate tumor cell death. It is possible that side effects such as neurotoxicity and cellular cisplatin resistance can be due to interaction of cisplatin with lipids and the phospholipid bilayer. In this study, 13C, 31P, and 15N solid-state NMR spectra of 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) bilayers, POPS bilayers with 10 mol% cisplatin, and POPS bilayers with 30 mol% cisplatin were acquired. In addition, 15N{31P} rotational echo double resonance spectra of POPS bilayers with 30 mol% cisplatin were acquired. The data demonstrate that the serine head group of phosphatidylserine binds to the aquated form of cisplatin and that cisplatin release of ammine takes place. It appears that the cisplatin release of ammine is followed by another cisplatin–POPS complex formation, possibly with cisplatin binding to one of the oxygen atoms of the POPS phosphate moiety.  相似文献   

20.
Complete 13C and 15N assignments of the B3 IgG-binding domain of protein G (GB3) in the microcrystalline solid phase, obtained using 2D and 3D MAS NMR, are presented. The chemical shifts are used to predict the protein backbone conformation and compared with solution-state shifts. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号