首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the mechanism(s) by which dexamethasone inhibit DMSO-induced Friend erythroleukemia cell differentiation in vitro. In particular, we examined the effects of dexamethasone on (a) the early events of differentiation such as cell volume alterations and 'memory response' and (b) the onset of biochemical events associated with terminal erythroid cell differentiation. By analysing kinetics of commitment of Friend cells to terminal erythroid differentiation on a clonal basis, we have observed that dexamethasone inhibited the completion of the latent period (time elapsed prior to commitment) and impaired "memory" (ability to inducer-treated cells to continue differentiation after a discontinuous exposure to inducer). Treatment of Friend cells with dexamethasone did not prevent the occurrence of DMSO-induced alterations in cell volume. However, dexamethasone treatment prevented a series of biochemical events associated with terminal Friend cell differentiation. These include the decrease in the rate of both cytoplasmic and nuclear RNA synthesis as well as the induction of cytidine deaminase activity and hemoglobin synthesis. These data indicate that the dexamethasone-sensitive process(es) operate during the early stages of Friend cell differentiation and that they are responsible for the inhibition of terminal erythroid maturation. These dexamethasone-sensitive processes, however, appear to be different from those regulating cell volume alterations during the early steps of DMSO-induced Friend cell differentiation.  相似文献   

2.
3.
4.
Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G(1) phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G(1)-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells.  相似文献   

5.
In vitro apoptotic cell death during erythroid differentiation   总被引:1,自引:0,他引:1  
Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro.  相似文献   

6.
In the present work we have studied the effect of experimental anemia induced at both low and optimal temperatures on erythropoiesis in Cyprinus carpio. The results showed that hemoglobin concentration per cell was similar in both temperature conditions, however, red blood cell (RBC) concentration was higher at the optimal temperature. Induced anemia caused an abrupt decrease in RBC concentration, while the hemoglobin concentration per cell remained unchanged. Recovery, as shown by electron microscopy, was characterized by the release of differentiating young and intermediate cells to the peripheral blood. It was revealed that with the progression of differentiation the nucleus/cytoplasm ratio decreases, the chromatin condenses and the shape of the nucleus changes from round to elliptical. Spectral imaging revealed an increase in the optical density of chromatin with the maturation of the cells. The chromatin that was dispersed over the nuclear volume in the young cells becomes highly ordered in the mature cells. Spectral similarity mapping revealed the formation of a novel structure of high symmetry, representing chromatin rearrangement during the process of cellular differentiation.  相似文献   

7.
8.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid 'burst-forming units' (BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

9.
Nuclear factors are effector molecules that directly regulate proliferation and differentiation of progenitor cells. Gene targeting experiments in mice have demonstrated that several nuclear factors are essential at different stages of erythroid development including cell cycling factors (Rb), and both ubiquitous (c-myb) and erythroid-specific (GA TA-1) DNA binding factors. In addition, DNA binding factors are required to establish the DNase I hypersensitive sites in the human β-globin locus control region (LCR). By 'opening' chromatin in the β-globin locus early in development, the LCR permits correct temporal and spatial expression of the globin genes in the maturing cells of the erythroid lineage.  相似文献   

10.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid ‘burst-forming units’(BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

11.
Zygotes are totipotent cells that have the ability to differentiate into all cell types. It is believed that this ability is lost gradually and differentiation occurs along with the progression of preimplantation development. Here, we hypothesized that the loose chromatin structure is involved in the totipotency of one-cell stage embryos and that the change from loose to tight chromatin structure is associated with the loss of totipotency. To address this hypothesis, we investigated the mobility of eGFP-tagged histone H2B (eGFP-H2B), which is an index for the looseness of chromatin, during preimplantation development based on fluorescent recovery after photobleaching (FRAP) analysis. The highest mobility of eGFP-H2B was observed in pronuclei in 1-cell stage embryos and mobility gradually decreased during preimplantation development. The decrease in mobility between the 1- and 2-cell stages depended on DNA synthesis in 2-cell stage embryos. In nuclear transferred embryos, chromatin in the pseudopronuclei loosened to a level comparable to the pronuclei in 1-cell stage embryos. These results indicated that the mobility of eGFP-H2B is negatively correlated with the degree of differentiation of preimplantation embryos. Therefore, we suggest that highly loosened chromatin is involved in totipotency of 1-cell embryos and the loss of looseness is associated with differentiation during preimplantation development.  相似文献   

12.
13.
14.
15.
There is a three- to four-fold decrease in the content/cell of tRNAs for ten different amino acids four days after the induction of erythroid differentiation in Friend leukemia cells, consistent with the decrease in cell volume that occurs. Surprisingly, there is an approximately two-fold increase in the cellular content of each of these tRNAs between day 4 and day 6 after induction, indicating the net synthesis of tRNA late in induction. The tRNA changes affect all species and do not result in tRNA specialization for hemoglobin synthesis, as occurs in normal erythroid development. The tRNA content of imidazole-treated cells, which do not synthesize hemoglobin although they undergo other changes of erythroid differentiation, decreases initially as described above, but shows no increase from day 4 to day 6.  相似文献   

16.
17.
18.
When mouse erythroleukemia (MEL) cells were incubated in the presence of chloramphenicol (a specific inhibitor for mitochondrial protein synthesis) during the early stage of in vitro erythroid differentiation, the number of induced erythroid cells was greatly reduced. By use of cell fusion between two genetically marked MEL cells, this finding was further investigated. We found that the drug, along with other agents which inhibit mitochondrial protein synthesis, blocked the induction and turnover of the DMSO-inducible intracellular-erythroid-inducing activity (differentiation-inducing factor II) in a manner similar to that of cycloheximide, an inhibitor for nuclear protein synthesis. The inhibitory effect was confirmed by directly assaying differentiation-inducing factor II in the cell extracts. These results strongly suggest that mitochondrial protein synthesis is closely associated with in vitro erythroid differentiation of MEL cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号