首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold-insoluble globulin (CIg) is a member of a group of circulating and cell-associated, high-molecular-weight glycoproteins termed fibronectins. CIg was isolated from human plasma by affinity chromatography on gelatin-Sepharose. SDS-polyacrylamide gel electrophoresis of the purified glycoprotein gave a double band that migrated near myosin. The CIg glycopeptides were released by pronase digestion and isolated by chromatography on Sephadex G-50. Affinity chromatography of the major G-50 peak on Con A-Sepharose resulted in two fractions: one-third of the glycopeptides were unbound and two-thirds were weakly bound (WB). Sugar composition analysis of the unbound glycopeptides by GLC of the trimethylsilyl methyl glycosides gave the following molar ratios: sialic acid, 2.5; galactose, 3.0; N-acetylglucosamine, 4.9; and mannose, 3.0. Sugar composition analysis of the WB glycopeptides gave the following molar ratios: sialic acid, 1.7; galactose, 2.0; N-acetylglucosamine, 4.1; and mannose, 3.0. The WB CIg glycopeptides cochromatographed on Sephadex G-50 with WB transferrin glycopeptides giving an estimated molecular weight of 2,800. After degradation with neuraminidase alone or sequentially with β-galactosidase the CIg and transferrin glycopeptides again cochromatographed. Methylation linkage analysis of the intact and the partially degraded glycopeptides indicated that the carbohydrate structure of the major human CIg glycopeptide resembles that of the major glycopeptide from transferrin.  相似文献   

2.
1. Glycopeptides were isolated by gel filtration on Sephadex G-25 and Sephadex G-50 from a Pronase digest of porcine thyroglobulin. 2. Isolated glycopeptides were separated into five main fractions on a column of DEAE-Sephadex A-25. Of these fractions I to III were further purified by SE-Sephadex C-25 or DEAE-Sephadex A-25 column chromatography. Several of the purified glycopeptides were homogeneous on paper electrophoresis. 3. Based on the chemical composition and molecular weight of the fractionated glycopeptides, two distinct types of heterosaccharide chain were demonstrated. 4. One type of the heterosaccharide unit consisted of four to eight residues of mannose and two residues of glucosamine and had a molecular weight of 1000-1700. The other type of unit contained sialic acid, fucose and galactose in addition to mannose and glucosamine and had a molecular weight of about 3600. 5. Mild alkaline treatment of the glycopeptide did not result in the destruction of threonine and serine. 2-Acetamido-1-N-(4-l-aspartyl)-2-deoxy-beta-d-glucopyranosylamine was isolated from partial acid hydrolysates.  相似文献   

3.
Three glycopeptides were isolated from the pronase digest of the protein moiety of pig serum low density lipoprotein. The isolation procedure consisted of pronase digestion, gel filtration on Sephadex G-25 and G-50 columns, paper chromatography and DEAE-Sephadex A-50 column chromatography. Based on the carbohydrate analysis, the isolated glycopeptides were classified into two types. One type (GDI) consisted of mannose and N-acetylglucosamine residues in the molar ratio of 6:2 and had a molecular weight of about 2,300. The other type (GDII and GDIII) consisted of sialic acid, mannose, galactose, fucose, and N-acetylglucosamine residues in the molar ratio of 1:4:2:1:3 and 2:4:3:1:3, respectively. The molecular weights of GDII and GDIII were about 2,100 and 3,100, respectively. The results on the strong alkaline treatment of these glycopeptides suggested that all carbohydrate chains were linked to the peptide chains through N-acetylglucosaminyl-asparagine linkages. Of these glycopeptides and pig serum lipoproteins, only glycopeptide GDI and native LDL strongly interacted with concanavalin A.  相似文献   

4.
N Swaminathan  F Aladjem 《Biochemistry》1976,15(7):1516-1522
Human serum low density lipoprotein (d = 1.027-1.045) was delipidated with organic solvents and the apoprotein digested with thermolysin. The digest was fractionated by gel filtration and DEAE-cellulose chromatography. Two glycopeptides were obtained. One of the glycopeptides (GP-I) contained 2 residues of N-acetylglucosamine and 6 residues of mannose per mole of the glycopeptide, while the other contained 2 sialic acid, 5 mannose, 2 galactose, and 3 N-acetylglucosamine residues per mole of glycopeptide. The results of sequential enzymatic digestion with purified glycosidases, periodate oxidation, and partial acid hydrolysis lead us to propose the following sturctures for the two glycopeptides: (see article). These glycopeptides represent at least 50% of the carbohydrate moiety of LDL.  相似文献   

5.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

6.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with α-methylmannoside, constitute about 25–30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chrolide columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with α-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

7.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with alpha-methylmannoside, constitute about 25--30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chloride columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with alpha-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

8.
The carbohydrate portion of the G glycoprotein of vesicular stomatitis virus (VSV) grown in CHO cells (CHO/VSV) has been fractionated on BioGelP6, concanavalin A-Sepharose, and pea lectin-agarose. The results suggest that, in addition to sialic acid and fucose heterogeneity, the asparagine-linked complex carbohydrate moieties of CHO/VSV also display branching heterogeneity. Although the majority of the glycopeptides bind to concanavalin A-Sepharose in a manner typical of certain biantennary carbohydrate structures, a significant proportion do not bind to the lectin. The latter behavior is typical of tri- or tetraantennary (branched) carbohydrate structures. The CHO/VSV glycopeptides which do not bind to concanavalin A-Sepharose separate into bound and unbound fractions on pea lectin-agarose suggesting that they include at least two different types of (branched) carbohydrate structures. Glycopeptides from the G glycoprotein of VSV grown in two, independently derived CHO glycosylation mutants which belong to complementation group 4 (Lec4 mutants) were examined in the same manner. In contrast to glycopeptides from CHO/VSV, glycopeptides from Lec4/VSV which passed through concanavalin A-Sepharose did not contain a component which subsequently bound to pea lectin-agarose. A glycopeptide fraction with these lectin-binding properties was also missing from cell surface glycopeptides derived from Lec4 cells. The combined results are consistent with the hypothesis that Lec4 CHO glycosylation mutants lack a glycosyltransferase activity responsible for the addition of a (branch) N-acetylglucosamine residue linked β1,6 to mannose.  相似文献   

9.
Plasma membranes were isolated from an ascites hepatoma, AH 130 FN, a free-cell type subline of AH 130, by the fluorescein mercuric acetate (FMA) method. Glycopeptides and mucopolysaccharides were prepared from the membranes by pronase digestion then fractionated chromatographically and electrophoretically. Isolated fractions were analyzed for amino acid and carbohydrate compositions. The results were compared with those for corresponding fractions from AH 66 and AH 130 ((1974) J. Biochem. 76, 319-333; (1975) ibid., 78, 863-872). The fraction excluded from Sephadex G-50 contained mucopolysaccharides and a series of glycopeptides. The mucopolysaccharides were identified as chondroitin sulfate A on the basis of their chemical composition, electrophoretic behavior on cellulose acetate and digestibility with chondroitinase AC [EC 4.2.2.5]. This contrasts with previous findings that mucopolysaccharides from the corresponding fractions from AH 130 and AH 66 were heparan sulfate. The chemical composition of the glycopeptides, which showed high contents of threonine, serine, galactose, galactosamine, glucosamine, and sialic acid, indicated the presence of glycopeptides with O-glycosidic linkages. The glycopeptides also contained a small but significant amount of aspartic acid, suggesting that N-glycosidic glycopeptides were also contained in this fraction. The fraction included in Sepnadex G-50 contaoned N-glycosidic glycopeptides as major components, since the carbohydrate moieties were composed of fucose, galactose, mannose, glucosamine, sialic acid, and a smaller amount of galactosamine. The presence of galactosamine suggested that O-glycosidic glycopeptides were present as minor components. Glycopeptides with both O- and N-glycosidic linkages were isolated from AH 130, but not from AH 66.  相似文献   

10.
Plasma membranes were isolated from an ascites hepatoma, AH 130, by the fluorescein mercuric acetate (FMA) method. Glycopeptides and mucopolysaccharides were prepared by digesting the membranes with pronase, then by fractionating the digest chromatographically and electrophoretically. Isolated fractions were analyzed for their amino acid and carbohydrate compositions. Results were compared with those for corresponding fractions from AH 66 (J. Biochem. 76, 319-333 (1974)). Mucopolysaccharides and a series of glycopeptides were isolated from the fraction excluded from Sephadex G-50. The mucopolysaccharides were identified as a family of heparan sulfates with different electrophoretic mobilities. The glycopeptides contained serine, threonine, galactose, galactosamine, glucosamine, and sialic acid as the major constituents as aspartic acid and mannose as minor ones. This suggests that most of the carbohydrate moieties are linked to serine or threonine (O-glycosidic), and that some are linked to asparagine (N-glycosidic). No nearly purely O-glycosidic glycopeptides were found in this fraction from AH 130, through they were the major glycopeptides from the AH 66 plasma membranes. In the fraction included in the gel, glycopeptides containing fucose, galactose, mannose, glucosamine, glaactosamine, and sialic acid were found. The presence of galactosamine suggests that some of the glycopeptides are O-glycosidic though most are N-glycosidic. In the corresponding fraction from AH 66, nearly purely N-glycosidic glycopeptides were found.  相似文献   

11.
Milk fat globule membrane was shown to contain sialic acid, all of which could be released without disruption of the fat globule. Sialoglycopeptides were cleaved from the surface of intact fat globules by Pronase and fractionated on Sephadex G-50. Further fractionation of the major sialoglycopeptide peak on DEAE-Sephadex gave two groups of sialoglycopeptides eluted with 0.1 M NaCl (Group A) and 0.5 M NaCl (Group B), respectively. Refractionation gave a major sialoglycopeptide from each of the two groups together with a total of three minor sialoglycopeptides. All five sialoglycopeptides eluted as single peaks using shallow salt gradients on DEAE-Sephadex and contained a hydrophilic peptide chain together with galactose, mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acid. Glycopeptides of Group A but not Group B contained fucose. The major sialoglycopeptide of Group B released 35% of its hexose and hexosamine on treatment with alkaline borohydride leaving a sialoglycopeptide which had reduced serine and threonine and elevated alanine levels and in addition contained 2-aminobutyric acid. An oligosaccharide fraction containing N-acetylgalactosaminitol, galactose and sialic acid in a molar ratio of 1:1:2 was partially characterised from the clevage mixture. The major sialoglycopeptide of Group A had a more complex carbohydrate structure and showed no released carbohydrate on treatment with alkaline borohydride. The sialoglycopeptides of milk fat globule membrane show many similarities with those of erythrocyte membrane and have a potential use in comparative and structural studies.  相似文献   

12.
1. Fraction I, a fraction containing acidic glycoproteins, isolated from guinea-pig serum, was digested with Pronase after removal of sialic acid and a major and a minor glycopeptide fraction were isolated by chromatography with Sephadex G-25 and G-50. 2. The major fraction was examined by various methods and shown to contain several glycopeptides. Estimates of molecular weight of the glycopeptide fractions were obtained. Although some variation appeared to occur, the glycopeptides were not grossly heterogeneous with respect to size. An average prosthetic group was estimated to contain about 15 sugar residues. 3. Aspartic acid was the principal amino acid present in the fractions and in all subfractions of the major fraction investigated. Where examined, ammonia was liberated on acid hydrolysis in approximately equimolar amounts to the aspartic acid present. The carbohydrate composition of the fractions was also determined. 4. The glycopeptides showed relatively little degradation in alkaline solution. 5. These results suggest that an N-acylglycosylamine bond involving aspartic acid forms the major type of linkage between carbohydrate and polypeptide. The isolation of a compound with the composition and chromatographic properties of 2-acetamido-1-(l-beta-aspartamido)-1,2-dideoxy-beta-d-glucose supports this view, and indicates that N-acetylglucosamine is the sugar involved in at least many linkages. 6. Fraction I contains some glycoproteins that are susceptible to Pronase and one or more others that resist digestion before the removal of sialic acid. A brief examination revealed some similarities between prosthetic groups derived from both kinds of glycoprotein.  相似文献   

13.
Conditions have been developed for maintaining hamster tracheas in organ culture for at least 10 days. Secreted glycoproteins labelled with [14C]glucosamine and [3H]fucose were isolated from the spent medium and digested with papain, and the digest was fractionated on DEAE-Sephadex by stepwise elution with NaCl. The fractions eluted by 0.1 and 0.2 M NaCl and some of the products eluted with 0.4 M NaCl were shown to be derived from epithelial glycoproteins. Glycosaminoglycans were eluted by 0.4 M and by 1.25 M NaCl. Glycopeptides isolated from the epithelium by homogenization, ethanol precipitation and papain digestion, and defined as “intracellular”, gave a very similar profile on DEAE-Sephadex. The 0.1 M glycopeptide peak was the major fraction of epithelial origin from both secreted and “intracellular” material; it labelled extensively with both glucosamine and fucose and had a molecular weight of approx. 5000 (as judged by its elution from Sephadex G-75). This fraction was purified further by chromatography on Sephadex G-75 and DEAE-Sephadex; its amino acid and carbohydrate compositions were determined.  相似文献   

14.
Twelve 14C-acetylated glycopeptides have been subjected to affinity chromatography on concanvalin A (Con A)--Sepharose at pH 7.5. The elution profiles could be classified into four distinct patterns. The first pattern showed no retardation of glycopeptide on the column and was elicited with a glycopeptide having three peripheral oligosaccharide chains: (abstract:see text). Such glycopeptides have only a single mannose residue capable of interacting with Con A--Sepharose; an interacting mannose residue is either an alpha-linked nonreducing terminal residue or an alpha-linked 2-O-substituted residue. The second type of profile showed a retarded elution of glycopeptide with buffer lacking methyl alpha-D-glucopyranoside (indicative of weak interaction with the column) and was given by glycopeptides with the structures: (abstract: see text) where R1 is either H or a sialyl residue. The third profile type showed tight binding of glycopeptide to Con A--Sepharose and elution as a sharp peak with 0.1 M methyl alpha-D-glucopyranoside; glycopeptides giving this pattern had the structures: (abstract: see text) where R2 is either H, glcNAc, Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc. These glycopeptides all have two interacting mannose residues, the mimimum required for binding to the column; one of these mannose residues must, however, be a terminal residue to obtain tight binding and sharp elution. The fourth profile type showed tight binding of glycopeptide to the column but elution with 0.1 M methyl alpha-D-glucopyranoside resulted in a broad peak indicating very tight binding; glycopeptides showing this behaviour had the structures: (abstract: see text) where R3 is either GlcNAc,Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc.Therefore it can be concluded that although a minimum of two interacting mannose residues is required for binding to Con A--Sepharose, the residues linked to these mannoses can either strengthen or weaken binding to the column.  相似文献   

15.
Saccharogenic amylase from Rhizopus javanicus sp. 3–46 was known to be a glycoprotein which contained 27 residues of mannose and 4 residues of N-acetylglucosamine per mole of the saccharogenic amylase. Attempts have been made to obtain glycopeptides from the saccharogenic amylase. Three glycopeptides, GP-I-a, GP-I-b and GP-II, were separated from a Pronase digest of heat-denatured saccharogenic amylase by gel filtration on Sephadex G-50 and chromatography on DEAE-Sephadex A-25. GP-I-a contained asparagine, glycine, mannose and N-acetylglucosamine in a molar ratio of 1: 1: 6: 2. GP-I-b contained asparagine, threonine, mannose and N-acetylglucosamine in a molar ratio of 1: 1: 9:2. GP-II consisted of threonine, serine, proline, alanine and mannose in a molar ratio of 6: 2: 2: 2: 12.  相似文献   

16.
The N-linked oligosaccharides synthesised by the murine plasmacytoma cell line NS-1 have been analysed by lectin affinity chromatography on columns of immobilised concanavalin A (Con A), Lens culinaris (lentil), Ricinus communis agglutinin (RCA) and leuko-phytohemagglutinin (L-PHA). The majority of complex N-glycans in this transformed cell line were branched structures with only a low level of biantennary complex chains detected. The analysis showed the major complex N-glycan fraction consisted of a minimum sialylated triantennary structure. [3H]Mannose-labelled transferrin receptor was isolated from NS-1 cells by immunoprecipitation followed by electroelution from SDS polyacrylamide gels. The isolated receptor was digested with Pronase and the 3H-labelled glycopeptides analysed by lectin affinity chromatography. Analysis by Con A-Sepharose indicated that approx. 50% of the labelled glycopeptides were branched complex N-glycans (unbound fraction) while the remainder were oligomannose structures (strongly bound). The presence of tri and/or tetraantennary structures in the Con A unbound fraction was further suggested by the interaction of 61% of the fraction with L-PHA. The lectin profiles obtained for the complex N-glycans of the transferrin receptor glycopeptides were similar to those for the total cellular glycopeptides of NS-1 cells. Reverse-phase HPLC analysis of tryptic glycopeptides of the isolated [3H]mannose-labelled transferrin receptor gave three 3H-labelled peaks, indicating that all three potential N-glycosylation sites on the receptor are utilised. The Con A-Sepharose profiles of the three fractions indicated the presence of branched complex N-glycans and high mannose chains at each site. The profiles of two of the tryptic glycopeptide fractions were very similar, while the third had a higher content of oligomannose oligosaccharides.  相似文献   

17.
Milk fat globule membrane was shown to contain sialic acid, all of which could be released without disruption of the fat globule. Sialoglycopeptides were cleaved from the surface of intact fat globules by Pronase and fractionated on Sephadex G-50. Further fractionation of the major sialoglycopeptide peak on DEAE-Sephadex gave two groups of sialoglycopeptides eluted with 0.1 M NaCI (Group A) and 0.5 M NaCI (Group B), respectively. Refractionation gave a major sialoglycopeptide from each of the two groups together with a total of three minor sialoglycopeptides. All five sialoglycopeptides eluted as single peaks using shallow salt gradients on DEAE-Sephadex and contained a hydrophilic peptide chain together with galactose, mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acid. Glycopeptides of Group A but not Group B contained fucose.The major sialoglycopeptide of Group B released 35 % of its hexose and hexosamine on treatment with alkaline borohydride leaving a sialoglycopeptide which had reduced serine and threonine and elevated alanine levels and in addition contained 2-aminobutyric acid. An oligosaccharide fraction containing N-acetylgalactosaminitol galactose and sialic acid in a molar ratio of 1 : 1 : 2 was partially characterised from the cleavage mixture.The major sialoglycopeptide of Group A had a more complex carbohydrate structure and showed no released carbohydrate on treatment with alkaline borohydride.The sialoglycopeptides of milk fat globule membrane show many similarities with those of erythrocyte membrane and have a potential use in comparative and structural studies.  相似文献   

18.
Myelin was purified from rat brain and sciatic nerve after invivo labeling with [3H]fucose and [14C]glucosamine to provide a radioactive marker for glycoproteins. The glycoproteins in the isolated myelin were digested exhaustively with pronase, and glycopeptides were isolated from the digest by gel filtration on Bio-Gel P-10. The glycopeptides from brain myelin separated into large and small molecular weight fractions, whereas the glycopeptides of sciatic nerve myelin eluted as a single symmetrical peak. The large and small glycopeptide fractions from central myelin and the single glycopeptide fraction from peripheral myelin were analyzed for carbohydrate by colorimetric and gas liquid chromatographic techniques. The glycopeptides from brain myelin contained 2.4 μg of neutral sugar and 0.59 μg of sialic acid per mg total myelin protein, whereas sciatic nerve myelin glycopeptides contained 10 μg of neutral sugar and 3.8 μg of sialic acid per mg total protein. Similarly, the gas-liquid chromatographic analyses showed that the glycopeptides from peripheral myelin contained 4- to 7-fold more of each individual per mg total myelin protein than those from central myelin. Most of the sialic acid and galactose in the glycopeptides from central myelin were in the large molecular weight fraction, and the small molecular weight glycopeptides contained primarily mannose and N-acetylglucosamine. The considerably higher content of glycoprotein-carbohydrate in peripheral myelin supports the results of gel electrophoretic studies, which indicate that the major protein in peripheral myelin in glycosylated while the glycoproteins in purified central myelin are quantitatevely minor components.  相似文献   

19.
U V Santer  M C Glick 《Biochemistry》1979,18(12):2533-2540
The predominant surface glycopeptide from a clone of baby hamster kidney cells transformed by Rous sarcoma virus (C13/B4), metabolically labeled with L-[14C]fucose, has been characterized for the first time. This glycopeptide represents 19% of the total radioactivity removed by trypsin from the cell surface of the transformed fibroblasts and is more abundant in the transformed cells than in the normal counterpart. Purification of the glycopeptide after digestion with Pronase was by successive chromatography on DEAE-cellulose and Sephadex G-50. The monosaccharide content of the glycopeptide was 42, 127, 138, 114, and 243 nmol of fucose, sialic acid, galatose, mannose, and glucosamine, respectively. A partial structure of the glycopeptide was proposed from the results of sequential enzymatic degradation coupled with gas-liquid chromatographic analysis of the resultant monosaccharides. All of the enzymes used were purified and pretested on natural substrates and found to remove terminal monosaccharides of the correct configuration, quantitatively. The purification and properties of an alpha-L-fucosidase from rat testes were described. All of the radioactivity in the glycopeptide, recovered as fucose, was present at the core and was removed by treatment with this alpha-L-fucosidase. The proposed structure is a triantennary, completely sialylated, complex glycopeptide containing a core region of beta-D-mannose, beta-D-N-acetylglucosamine, and alpha-L-fucose.  相似文献   

20.
Asparagine-linked oligosaccharides were isolated from normal and chronic leukemic leukocytes (normal neutrophils, normal lymphocytes, chronic myeloid, chronic lymphoid and hairy cell leukemic leukocytes) and analyzed by sequential lectin affinity column chromatography. The neutral and sialylated glycopeptides ranged in size from 1,800 to 4,000 da. on gel filtration. Sequential lectin affinity analysis was then used to fractionate the Asn-oligosaccharides into major structural classes of high mannose, hybrid, and bi-, tri- and tetraantennary complex structures. Using lectins of well defined specificity, the sequential chromatography provided a satisfactory means of assessing the overall glycopeptide profiles of the different leukocyte types. Results from 10 patient samples show that alterations in leukocyte Asn-oligosaccharides occur during leukemogenesis. Most notable was an average twofold increase in the relative amount of high mannose glycopeptides compared to complex glycopeptides for the leukemic cells. High mannose glycopeptides comprised 8.6 percent of the total lectin-adherent glycopeptides from leukemics, and 4.2 percent in the normals. In addition, carbohydrate analysis has revealed that the total amount of neutral hexose was markedly decreased in all leukemic samples. Leukemics ranged from 10.5 to 18.8, while normals ranged from 24.2 to 49.2 nanomole of hexose per 100 micrograms protein. The sialic acid content of the leukemic glycopeptides was relatively unchanged from that of normals, resulting in an apparent increase in the sialic acid: hexose ratio for all leukemic glycopeptides. The results suggest that in the leukemic cells, high mannose structures constitute a larger proportion of the total Asn-linked oligosaccharides, while the overall level of protein glycosylation is decreased. Complex multiantennary glycopeptides, when synthesized, tended to be more fully sialylated than their normal counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号