共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In all vertebrates, mature oocytes arrest at the metaphase of the II meiotic division, while some invertebrates arrest at metaphase-I, others at prophase-I. Fertilization induces completion of meiosis and entry into the first mitotic division. Several experimental models have been considered from both vertebrates and invertebrates in order to shed light on the peculiar aspects of meiotic division, such as the regulation of the cytostatic factor (CSF) and the maturation promoting factor (MPF) in metaphase I or II. Recently, we proposed the oocytes of ascidian Ciona intestinalis as a new model to study the meiotic division. Here, taking advantage of the recent publication of the C. intestinalis genome, we presented a phylogenetic analysis of key molecular components of the CSF-related machinery. We showed that the Mos/MAP kinase pathway is perfectly conserved in ascidians. We demonstrated the presence of a CSF-like activity in metaphase-I arrested C. intestinalis oocytes able to block cell division in two-cell embryos. We further investigated the regulation of CSF by demonstrating that both CSF and MPF inactivation, at the exit of metaphase-I, are independent from protein synthesis, indicating the absence of short-lived factors that regulate metaphase stability, as in other invertebrate species. The results obtained suggest that meiotic regulation in C. intestinalis resembles that of vertebrates, such as Xenopus accordingly to the position of this organism in the evolutionary tree. 相似文献
3.
4.
5.
Katsumi Takamura 《Development genes and evolution》1998,208(1):1-8
With the use of the monoclonal antibody UA301, which specifically recognizes the nervous system in ascidian larvae, the neuronal
connections of the peripheral and central nervous systems in the ascidian Ciona intestinalis were observed. Three types of peripheral nervous system neurons were found: two located in the larval trunk and the other
in the larval tail. These neurons were epidermal and their axons extended to the central nervous system and connected with
the visceral ganglion directly or indirectly. The most rostral system (rostral trunk epidermal neurons, RTEN) was distributed
bilateral-symmetrically. In addition, presumptive papillar neurons in palps were found which might be related to the RTEN.
Another neuron group (apical trunk epidermal neurons, ATEN) was located in the apical part of the trunk. The caudal peripheral
nervous system (caudal epidermal neurons, CEN) was located at the dorsal and ventral midline of the caudal epidermis. In the
larval central nervous system, two major axon bundles were observed: one was of a photoreceptor complex and the other was
connected with RTEN. These axon bundles joined in the posterior sensory vesicle, ran posteriorly through the visceral ganglion
and branched into two caudal nerves which ran along the lateral walls of the caudal nerve tube. In addition, some immunopositive
cells existed in the most proximal part of the caudal nerve tube and may be motoneurons.
Received: 8 September 1997 / Accepted: 14 December 1997 相似文献
6.
7.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes. 相似文献
8.
Microinjection of the Minos transposon is the only reported technique for generating stable transgenic lines in the cosmopolitan ascidian, Ciona intestinalis. To establish a more amenable method for generating stable transgenic Ciona, we examined the possibility of using electroporation of DNA into eggs. From 0-44.4% of electroporated individuals transmitted transgenes to the next generation. The transgene was integrated into one chromosome and multiple copies of the transgene were inserted into one site of the chromosome, indicating that electroporation is an easy and powerful technique for achieving stable transgenesis in C. intestinalis. Together with possible inland culture of this ascidian, this technique will be useful for generating stable lines which have reporter gene expression in a specific tissue or organ and the generation of transposase-expressing stable transgenic (jump-starter) lines and mutator lines which contain a lot of Minos transposons in an insertion position. 相似文献
9.
10.
11.
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors. The vegetal blastomeres show a differential inducing activity along the anterior-posterior axis, while the competence to respond to this inducing signal is markedly higher in the anterior animal blastomeres than in the posterior animal blastomeres. This differential competence to respond is also observed in response to bFGF, a candidate neural inducer in ascidians (J. Physiol. 511.2 (1998) 347) and can be detected by the gastrula stage. Our results, however, indicate that bFGF can only induce a subset of the responses of the endogenous inducer, suggesting that additional signals in the embryo are necessary to induce a fully patterned nervous system. 相似文献
12.
We have cloned a newly identified gene, designated CiNut, C iona i ntestinalis neural-tube-specific gene. CiNut shows weak similarity to known neural receptors such as adrenergic receptors. Moreover, seven transmembrane domains are predicted based on its amino acid sequence. Zygotic expression of CiNut starts at the gastrula stage, and is restricted to the entire neural tube in the neurula- and the tailbud-stage embryos. CiNut is thus thought to be a novel G-protein-coupled receptor important for neural tube formation, and should provide a useful tool for the analysis of the molecular mechanism of neural tube formation. 相似文献
13.
Kobayashi M Matsuda M Asakawa S Shimizu N Nagahama Y Satou Y Satoh N 《Genes & genetic systems》2002,77(4):283-285
Large insert genomic bacterial artificial chromosome (BAC) libraries were constructed from a basal chordate, the ascidian Ciona intestinalis. Insert analyses of randomly selected clones indicated that in the first library the mean insert size was 135 kb and predicted a 15-fold coverage of the Ciona genome, and in the second library the mean insert size was 165 kb and predicted a 5-fold coverage of the genome. These first large insert genomic libraries of the ascidian should increase the speed of genomic analyses of basal chordates. 相似文献
14.
The Ciona intestinalis genome harbors three insulin-like genes: INS-L1, -L2 and -L3. Conserved synteny between the Ciona-human genomes predicts that Ciona INS-Ls are orthologous to the vertebrate insulin-relaxin family, but this relation cannot be inferred from molecular phylogeny. A conserved protein core with six cysteines; typical arrangement of B-, C- and A-protein domains; pro-protein maturation mode; and putative insulin receptor-binding sites were identified in Ciona INS-L proteins. ESTs used to assemble exonic sequences of INS-Ls combined with qRT-PCR analysis provided evidence that the predicted genes are expressed in the developing and adult Ciona. Our results support that Ciona INS-L1 is orthologous to the vertebrate insulin-like/relaxin genes, INS-L2 to insulin genes and INS-L3 to IGF genes. Our analysis also implies that the insulin-like/relaxin ancestor switched receptor type from tyrosine kinase- to GPCR-type, whereas insulin-IGF subfamily retained the tyrosine kinase-type of receptor. We propose that this receptor-switch occurred after the time when urochordates branched from the common chordate lineage, but before the two genome-duplications at the root of the vertebrates. 相似文献
15.
16.
Robert M. Woollacott 《Journal of morphology》1977,152(1):77-88
The complex array of vestments which surrounds the ascidian oocyte indicates that spermatozoa of these urochordates may be highly modified to effect penetration through the egg-envelopes and to achieve successful fusion with the female gamete. Examination of the spermatozoa of Ciona intestinalis reveals, however, that they lack an acrosomal vesicle and do not possess detectable amounts of actin. Furthermore, the spermatozoa do not undergo observable morphological alterations when exposed to ammoniated seawater, a treatment known to produce aggregation and an acrosome reaction in other organisms. Ciona spermatozoa do contain significant quantities of proteases. It is hypothesized that the localization of these enzymes may be related to the ridge-like surface ornamentation which is observed as a component of the head region of Ciona spermatozoa. 相似文献
17.
For whole-genome analysis in a basal chordate (protochordate), we used F1 pseudo-testcross mapping strategy and amplified fragment length polymorphism (AFLP) markers to construct primary linkage maps of the ascidian tunicate Ciona intestinalis. Two genetic maps consisted of 14 linkage groups, in agreement with the haploid chromosome number, and contained 276 and 125 AFLP loci derived from crosses between British and Neapolitan individuals. The two maps covered 4218.9 and 2086.9 cM, respectively, with an average marker interval of 16.1 and 18.9 cM. We observed a high recombinant ratio, ranging from 25 to 49 kb/cM, which can explain the high degree of polymorphism in this species. Some AFLP markers were converted to sequence tagged sites (STSs) by sequence determination, in order to create anchor markers for the fragmental physical map. Our recombination tools provide basic knowledge of genetic status and whole genome organization, and genetic markers to assist positional cloning in C. intestinalis. 相似文献
18.
19.
Keita Yoshida Nicholas Treen Akiko Hozumi Tetsushi Sakuma Takashi Yamamoto Yasunori Sasakura 《Genesis (New York, N.Y. : 2000)》2014,52(5):431-439
Summary: Targeted mutagenesis of genes‐of‐interest, or gene‐knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN‐mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN‐mediated germ cell mutagenesis. genesis 52:431–439, 2014. © 2014 Wiley Periodicals, Inc. 相似文献