首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-glutamyl transpeptidase (gamma-GTP) is a membrane-bound enzyme which is known to play a crucial role in active transport of amino acids across membrane barriers. We prepared a monoclonal antibody recognizing specifically rat gamma-GTP and investigated localization of the enzyme in the rat brain by immunohistochemistry with this antibody. The antigen was localized on the ependyma, epithelia of the choroid plexus and microvessels. More precise localization of gamma-GTP was examined with immuno-electron microscopy. The antigen was recognized on the microvilli and cilia of the ependymal cells, microvilli of the choroid epithelial cells and luminal membranes of the vascular endothelial cells.  相似文献   

2.
The reaction of gamma-glutamyl transpeptidase from rat kidney with a glutamine analog, 6-diazo-5-oxo-L-norleucine, resulted in irreversible inactivation of the enzyme. The concentration of this reagent giving a half-maximum rate of inactivation was 6 mMat pH 7.5. The inactivation was prevented by the presence of reduced glutathione in a competitive fashion, which indicates the active-site-directed nature of this reagent. The rate of inactivation was greatly accelerated in the presence of maleate, which is known to enhance the glutaminase activity of this enzyme. The presence of maleate increased the maximum velocity of the inactivation, but did not affect the affinity of the enzyme for 6-diazo-5-oxo-L-norleucine. Inactivation of the enzyme with 6-diazo-5-oxo-L-[6=14C]norleucine as well as with 6-diazo-5-oxo-L[1,2,3,4,5-14C]norleucine resulted in a stoichiometric incorporation of radioactivity into the enzyme protein via covalent linkage. The amount of radioactivity incorporated was 1 mol 14C label/248000 g enzyme protein. A native enzyme preparation showing a single protein band on polyacrylamide gel electrophoresis gave four distinct bands upon sodium dodecylsulfate/polyacrylamide gel electrophoresis. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis of the 14C-labeled enzyme, only the band moving the fastest towards the anode was found to contain radioactivity. This finding indicates that this protein band represents the catalytic component of the enzyme.  相似文献   

3.
4.
Duplication of the bcr and gamma-glutamyl transpeptidase genes.   总被引:7,自引:1,他引:6       下载免费PDF全文
The Philadelphia (Ph') translocation involves rearrangement of the bcr gene located on chromosome 22. Hybridization experiments revealed the presence of multiple bcr gene-related loci within the human genome. Two of these were molecularly cloned and characterized. Both loci contain exons and introns corresponding to the 3' region of the bcr gene. Restriction enzyme and DNA sequence analysis indicate a very high degree of conservation between bcr and the two related genomic sequences. Both bcr-related loci are located on chromosome 22, one centromeric, the other telomeric, of the bcr gene. Within the two bcr related genomic sequences, fragments or the complete coding sequences of an unrelated gene were found to be present. This gene was identified; it encodes gamma-glutamyl transferase, an enzyme involved in the glutathione metabolism.  相似文献   

5.
Intramolecular crosslinking of gamma-glutamyl transpeptidase   总被引:1,自引:0,他引:1  
gamma-Glutamyl transpeptidase (rat kidney) is a heterodimeric glycoprotein (subunit molecular weights 52,000 and 25,000). In addition to its single-chain biosynthetic precursor (Mr 78,000), glycosylated high molecular weight forms (Mr 85,000-95,000) have been reported in various rat tissues as well as during in vitro translation of its mRNA. Studies reported here suggest that these might be attributed to the anomalous behavior of intramolecularly crosslinked species. Thus, chemical crosslinking of the purified enzyme (as well as enzyme on the renal brush border membranes) by bifunctional reagents such as dimethyl suberimidate and by an active site-directed reagent, diazotized p-amino-hippurate, produces stable heterodimers which exhibit molecular weights identical to that of the native enzyme when subjected to gel filtration. However, when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the crosslinked species exhibit apparent Mr values of 85,000 to 110,000, depending upon the crosslinking agent used. Protein glycosylation alone does not account for such anomalous electrophoretic behavior; the extent and the regions of the enzyme involved in formation of crosslinks appear to exert considerable constraints upon their conformation even in denaturing media.  相似文献   

6.
7.
The kinetics of sheep kidney gamma-glutamyl transpeptidase was studied using a novel substrate L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate. When the substrate was incubated with the enzyme in the presence of an amino acid or peptide acceptor, the corresponding L-alpha-methyl-gamma-glutamyl derivatives of the acceptors were formed. In the absence of acceptor only hydrolysis occurred, and no transpeptidation products were detected. The presence of the methyl group on the alpha-carbon apparently prevents enzymatic transfer of the L-alpha-methyl-gamma-glutamyl residue to the amino group of the substrate itself (autotranspeptidation). When the enzyme was incubated with conventional substrates, such as glutathione or gamma-glutamyl-p-nitroanilide and an amino acid acceptor, hydrolysis, autotranspeptidation, and transpeptidation to the acceptor occurred concurrently. Initial velocity measurements in which the concentration of L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate was varied at several fixed acceptor concentrations, and either the release of alpha-aminobutyrate or the formation of the transpeptidation products was determined, yielded results which are consistent with a ping-pong mechanism modified by a hydrolytic shunt. A scheme of such a mechanism is presented. This mechanism predicts the formation of an alpha-methyl-gamma-glutamyl-enzyme intermediate, which can react with an amino acid to form the transpeptidation product; or in the absence of, or in the presence of low concentrations of amino acids, can react with water to form the hydrolytic products. Kinetic derivations for the reaction of the enzyme with the conventional substrate gamma-glutamyl-p-nitroanilide predict either linear or nonlinear double-reciprocal plots, depending on the prevalence of the hydrolytic, autotranspeptidation, or transpeptidation reactions. The results of kinetic experiments confirmed these predictions.  相似文献   

8.
A benzfurazan derivative of glutathione l-γ-glutamyl-(S-4-nitrobenz-2-oxa-1,3-diazole)-l-cysteinylglycine (GS-NBD) with an absorption maximum at 419 nm is readily acted upon by γ-glutamyl transpeptidase to yield the S-benzfurazan derivative of cysteinylglycine. An internal SN shift occurs immediately to yield the N-benzfurazan derivative, which in turn reacts with the sulfhydryl reagent 4,4′-dithiodipyridine to produce the mixed disulfide with an intense absorption at 461 nm. The maximum difference in molar extinction coefficient is 13,200 and occurs at 470 nm. This general device should be applicable to the assay of many other peptidases.  相似文献   

9.
A cDNA clone for a novel homologue to gamma-glutamyl transpeptidase (gamma-GTP), termed GTPH, was isolated from a rat brain expression cDNA library using antisera against total brain synaptosomal fractions. The cloned GTPH consists of 641 amino acid residues (78 kDa) and exhibits structural similarity with a conventional type of gamma-GTP that is predominantly expressed in the liver: They share significant amino acid homology (33% identity, 73% similarity) spanning over the entire sequence. RNA analyses revealed that GTPH mRNA expression is found only in the nervous system, including all brain regions, eyes and peripheral ganglia, and increases during development. Endogenous GTPH protein is a membrane-bound glycoenzyme and migrates as 90-100 kDa in polyacrylamide gels. Taken together, GTPH is a novel form of a gamma-GTP-like molecule expressed exclusively in the nervous system.  相似文献   

10.
A physiological assay for measuring surface accessible gamma-glutamyl transpeptidase activity in adherent, living cultures is described. Cell surface transpeptidase activity remained linear throughout a 60-min time course over a wide range of cell densities. In addition, the assay conditions have neither acute nor long-term effects on cell growth potential, cellular morphology, or cell surface transpeptidase activity levels. As a result, cell surface transpeptidase activity can be continually evaluated in the same cultures during proliferation. The assay appears to be specific for cell surface transpeptidase and can be used to study the partitioning of the enzyme between substrate-accessible and substrate-inaccessible pools. This method utilizes an automated microtiter plate reader for the spectrophotometric quantification of small aliquots removed from cultures incubated with the chromogenic substrate L-gamma-glutamyl-p-nitroanilide. The use of a microtiter plate autoreader and the minimal handling of the cells permit a large number of cultures to be assayed with a substantial reduction in the time required to measure surface transpeptidase activity. The assay described is a nondestructive means for studying cell surface-accessible gamma-glutamyl transpeptidase catalytic activity within the microenvironment of the living culture.  相似文献   

11.
gamma-Glutamyl transpeptidase, which is composed of two unequal subunits, exhibits proteinase activity when treated with agents such as urea and sodium dodecyl sulfate. The heavy subunit is preferentially and rapidly degraded. The enzyme also degraded bovine serum albumin in the presence of urea; however, several other proteins and model proteinase substrates were not cleaved. Treatment of the enzyme with 6-diazo-5-oxo-L-norleucine, a gamma-glutamyl analog, results in parallel loss of transpeptidase and proteinase activities indicating that the site at which gamma-glutamylation of the enzyme occurs (presumably a hydroxyl group on the light subunit) is also involved in proteinase activity. The purified light subunit, but not the heavy subunit, exhibits proteinase activity even in the absence of urea. Results suggest that dissociation of the enzyme unmasks the proteinase activity of the light subunit involving the site at which gamma-glutamylation of the enzyme occurs, and that the heavy subunit may impose transpeptidase reaction specificity by contributing the binding domains for gamma-glutamyl substrates.  相似文献   

12.
13.
S S Tate 《FEBS letters》1986,194(1):33-38
The two subunits of gamma-glutamyl transpeptidase (EC 2.3.2.2) are derived from a single-chain glycosylated precursor. A small fraction of the propeptide survives proteolytic processing in the rat kidney and has been purified by an immunoaffinity technique. The propeptide contains determinants for both the subunits and its amino acid composition resembles that of the dimeric enzyme. However, the propeptide exhibits less than 2% of the transpeptidase activity shown by the dimeric enzyme.  相似文献   

14.
P D Dass 《Life sciences》1983,33(18):1757-1762
This study demonstrates the formation of gamma-glutamyl peptides from glutamine and plasma amino acids, as catalyzed by gamma-glutamyl transpeptidase. It also establishes the effect of various amino acids in modulating the rate of glutamine utilization as well as the hydrolytic or transfer product formed. The mechanism of the utilization of glutamine as catalyzed by gamma-glutamyl transpeptidase, involves the formation of a gamma-glutamyl enzyme bound intermediate as the initial step, with release of the amide nitrogen as ammonium, NH+4, Figure 1. The gamma-glutamyl enzyme bound intermediate either reacts with the acceptor amino acids or water; reaction with amino acids yields gamma-glutamylpeptides via the transfer pathway and reaction with water yields glutamate via the hydrolytic pathway.  相似文献   

15.
Hexachlorocyclohexane (BHC) induced gamma-Glutamyl transpeptidase in rat liver. The enzyme was partially purified from normal BHC fed and fetal liver and also from hepatoma. The gel filtration and electrophoretic properties of the BHC-induced enzyme was compared against that of the other three. Chemical induced hepatoma showed an additional peak of activity in Sephadex G-200 filtration. The other enzymes could be cleaved by papain to give a fraction which cochromatographed with the additional peak of hepatoma enzyme. BHC-induced enzyme and normal enzyme had similar electrophoretic mobility but differed from that of hepatoma and fetal liver enzyme which showed a slightly slower movement.  相似文献   

16.
A new tetrazolium method for the histochemical demonstration of gamma-glutamyl transpeptidase is proposed. The method is based on a newly synthesized substrate-gamma-L-glutamic acid-1-hydroxy-4-naphthylamide, which upon the enzyme hydrolysis liberates 1,4-aminonaphthol--a powerful reducing agent that reduces tetrazolium salts quickly and quantitatively to deeply colored, water-insoluble formazans, precipitating on the sites of the enzyme activity and marking them accurately. The redox reaction is quick enough and does not need any auxiliary electron-acceptor. The method is very fast and convenient for the histochemical visualization of the enzyme.  相似文献   

17.
Following Northern analysis, GGT mRNA was found predominantly within the caput epididymides and kidney. The size of mRNAs for kidney, caput, corpus, and ductus deferens were 2.2, 2.3, 2.2, and 2.3 kb, respectively, whereas cauda showed a doublet of 2.2 and 2.3 kb. GGT transpeptidation and hydrolytic activity within epididymal luminal fluids collected by micropuncture showed caput = corpus greater than cauda and corpus greater than caput greater than cauda, respectively. Caput luminal GGT transpeptidation activity was significantly inhibited by serine-borate and was optimal at pH 8.0. The calculated Km and Vmax values for hydrolysis of GSH by caput luminal GGT were 0.06 microM and 2.19 nmoles/min/microliters luminal fluid at pH 8.5 compared to 0.49 microM and 0.49 nmoles/min/microliters luminal fluid, respectively, at the physiological pH 6.5 of caput fluid. These studies would suggest that the epididymis can control the activity of luminal GGT by pH. Lower Km (0.12 microM) and higher Vmax (1.13 nmoles/min/microliters luminal fluid) values were also calculated when GSSG was used compared to GSH. Results from Triton X-114 partitioning experiments suggest that luminal GGT probably exists in both membrane bound and nonmembrane bound forms. Western blot analysis of proteins within epididymal luminal fluids revealed both subunits of GGT in all epididymal regions studied. However, two lower molecular bands, approximately 22 kDa and 21 kDa, were also observed in cauda fluid. It is suggested that as GGT is transported along the epididymal duct it undergoes degradation, which accounts for its loss of activity in the distal epididymal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号