首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonstructural protein 2 (NS2) from parvovirus minute virus of mice (MVMp) is a 25-kDa polypeptide which localizes preferentially to the cytoplasm and associates with cellular proteins in cytoplasm. These lines of evidence suggest that NS2 is positively exported from the nucleus to cytoplasm and functions in cytoplasm. We report here that nuclear export of NS2 is inhibited by leptomycin B (LMB), a drug that specifically blocks nuclear export signal (NES)-chromosomal region maintenance 1 (CRM1) interactions. CRM1 binds specifically to the 81- to 106-amino-acid (aa) region of NS2, and the region of NS2 actually functions as a NES. Interestingly, this region appears to be distinct from a typical NES sequence, which consists of leucine-rich sequences. These results indicate that NS2 protein is continuously exported from the nucleus by a CRM1-dependent mechanism and suggest that CRM1 also exports to distinct type of NESs.  相似文献   

2.
CRM1 exports proteins that carry a short leucine-rich peptide signal, the nuclear export signal (NES), from the nucleus. Regular NESs must have low affinity for CRM1 to function optimally. We previously generated artificial NESs with higher affinities for CRM1, termed supraphysiological NESs. Here we identify a supraphysiological NES in an endogenous protein, the NS2 protein of parvovirus Minute Virus of Mice (MVM). NS2 interacts with CRM1 without the requirement of RanGTP, whereas addition of RanGTP renders the complex highly stable. Mutation of a single hydrophobic residue that inactivates regular NESs lowers the affinity of the NS2 NES for CRM1 from supraphysiological to regular. Mutant MVM harboring this regular NES is compromised in viral nuclear export and productivity. In virus-infected mouse fibroblasts we observe colocalization of NS2, CRM1 and mature virions, which is dependent on the supraphysiological NS2 NES. We conclude that supraphysiological NESs exist in nature and that the supraphysiological NS2 NES has a critical role in active nuclear export of mature MVM particles before cell lysis.  相似文献   

3.
4.
The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.  相似文献   

5.
6.
Lentiviral genomic RNAs are encapsidated by the viral Gag protein during virion assembly. The intracellular location of the initial Gag-RNA interaction is unknown. We previously observed feline immunodeficiency virus (FIV) Gag accumulating at the nuclear envelope during live-cell imaging, which suggested that trafficking of human immunodeficiency virus type 1 (HIV-1) and FIV Gag may differ. Here we analyzed the nucleocytoplasmic transport properties of both Gag proteins. We discovered that inhibition of the CRM1 nuclear export pathway with leptomycin B causes FIV Gag but not HIV-1 Gag to accumulate in the nucleus. Virtually all FIV Gag rapidly became intranuclear when the CRM1 export pathway was blocked, implying that most if not all FIV Gag normally undergoes nuclear cycling. In FIV-infected feline cells, some intranuclear Gag was detected in the steady state without leptomycin B treatment. When expressed individually, the FIV matrix (MA), capsid (CA), and nucleocapsid-p2 (NC-p2) domains were not capable of mediating leptomycin B-sensitive nuclear export of a fluorescent protein. In contrast, CA-NC-p2 did mediate nuclear export, with MA being dispensable. We conclude that HIV-1 and FIV Gag differ strikingly in a key intracellular trafficking property. FIV Gag is a nuclear shuttling protein that utilizes the CRM1 nuclear export pathway, while HIV-1 Gag is excluded from the nucleus. These findings expand the spectrum of lentiviral Gag behaviors and raise the possibility that FIV genome encapsidation may initiate in the nucleus.  相似文献   

7.
The NS2 (NEP) protein of influenza A virus contains a highly conserved nuclear export signal (NES) motif in its amino-terminal region (12ILMRMSKMQL21, A/WSN/33), which is thought to be required for nuclear export of viral ribonucleoprotein complexes (vRNPs) mediated by a cellular export factor, CRM1. However, simultaneous replacement of three hydrophobic residues in the NES with alanine does not affect NS2 (NEP) binding to CRM1, although the virus with these mutations is not viable. To determine the extent of sequence conservation required by the NS2 (NEP) NES for its export function during viral replication, we randomly introduced mutations by degenerative mutagenesis into the region of NS cDNA encoding the NS2 (NEP) NES and then attempted to generate mutant viruses containing these alterations by reverse genetics. Sequence analysis of the recovered viruses showed that although some of the mutants possessed amino acids other than those conserved in the NES, hydrophobicity within this motif was maintained. Nuclear export of vRNPs representing all of the mutant viruses was completely inhibited in the presence of a CRM1 inhibitor, leptomycin B, as was the transport of wild-type virus, indicating that the CRM1-mediated pathway is responsible for the nuclear export of both wild-type and mutant vRNPs. The vRNPs of some of the mutant viruses were exported in a delayed manner, resulting in limited viral growth in cell culture and in mice. These results suggest that the NES motif may be an attractive target for the introduction of attenuating mutations in the production of live vaccine viruses.  相似文献   

8.
T- and L-plastin are highly similar actin-bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T-plastin localizes predominantly to the cytoplasm, whereas L-plastin distributes between nucleus and cytoplasm in HeLa or Cos cells. T-plastin shows nuclear accumulation upon incubation of cells with the CRM1 antagonist leptomycin B (LMB). We identified a Rev-like nuclear export sequence (NES) in T-plastin that is able to export an otherwise nuclear protein in an LMB-dependent manner. Deletion of the NES promotes nuclear accumulation of T-plastin. Mutation of residues L17, F21 or L26 in the T-plastin NES inhibits nuclear efflux. L-plastin harbors a less conserved NES and lacks the F21 T-plastin residue. Insertion of a Phe residue in the L-plastin NES specifically enhances its export activity. These findings explain why both isoforms exhibit specific distribution patterns in eukaryotic cells.  相似文献   

9.
For nuclear export of proteins, the formation of a ternary export complex composed of the export substrate, a cellular export factor and Ran-GTP is crucial. CRM1 is a cellular export factor for proteins containing leucine-rich nuclear export signals (NESs). Although the NES sequence is crucial for nuclear export, its exact role in the formation of the ternary export complex is controversial. Here we demonstrate an interaction between human CRM1 (hCRM1) and influenza A virus NS2 protein, which contains an NES motif in its N-terminal region. Replacement of the hydrophobic amino acids in the NES motif did not abolish NS2's interaction with hCRM1. Using our recently established systems for the generation of influenza virus or virus-like particles from cloned cDNAs, we found that NS2 is essential for nuclear export of influenza virus ribonucleoprotein (RNP) complexes, and that alteration of the NS2-NES abrogated this event and influenza virus generation. These findings suggest that the NS2-NES is not crucial for the interaction of this protein with hCRM1, but is for the formation of the ternary export complex with Ran-GTP.  相似文献   

10.
11.
To investigate whether a DNA virus can evade passive immunotherapy with a polyclonal antiserum, we analyzed the protection of a neutralizing capsid antiserum against a lethal infection of the immunosuppressive strain of the parvovirus minute virus of mice (MVMi) in 42 immunodeficient mice over a period of 200 days. A few mice were effectively protected, but most developed a delayed lethal leukopenic syndrome during the treatment or weeks afterwards. Unexpectedly, viruses isolated from treated but also from control leukopenic mice showed no amino acid changes throughout the entire capsid coding region, although the viral populations were genetically heterogeneous, mainly in the second exon of the coding sequence of the NS2 nonstructural protein. The NS2 point amino acid changes (T88A, K96E, L103P, and L153 M) that were consistently selected in several mice clustered within the nuclear exportin CRM1 binding domain, in a reading frame that did not alter the overlapping NS1 coding region. These mutations endowed emerging viruses with an increased fitness that was demonstrable by their relative resistance to the neutralizing capsid antiserum in a postentry plaque-forming assay, the rapid overgrowth of a competing wild-type (wt) population in culture, and a larger yield of infectious particles. Mutant NS2 proteins interacted with a higher affinity and sequestered CRM1 in the perinuclear region of the cytoplasm more efficiently than the wt. Correspondingly this phenomenon, as well as the following timely ordered release of the NS1 nonstructural protein and the empty capsid from the nucleus to the cytoplasm, occurred markedly earlier in the infection cycle of the mutant viruses. We hypothesize that the enhanced cytoplasmic sequestration of CRM1 by the NS2 mutations selected in mice may trigger pleiotropic effects leading to an accelerated MVMi life cycle and thus to increased fitness. These results strengthen our earlier report on the rapid evolutionary capacity of this mammalian-specific DNA virus in vivo and indicate that the NS2-CRM1 interaction is an important determinant of parvovirus virulence that can be modulated in nature, hampering the effectiveness of passive antibody therapies in the long term.  相似文献   

12.
Influenza A virus NS2 protein, also called nuclear export protein (NEP), is crucial for the nuclear export of viral ribonucleoproteins. However, the molecular mechanisms of NEP mediation in this process remain incompletely understood. A leucine-rich nuclear export signal (NES2) in NEP, located at the predicted N2 helix of the N-terminal domain, was identified in the present study. NES2 was demonstrated to be a transferable NES, with its nuclear export activity depending on the nuclear export receptor chromosome region maintenance 1 (CRM1)-mediated pathway. The interaction between NEP and CRM1 is coordinately regulated by both the previously reported NES (NES1) and now the new NES2. Deletion of the NES1 enhances the interaction between NEP and CRM1, and deletion of the NES1 and NES2 motifs completely abolishes this interaction. Moreover, NES2 interacts with CRM1 in the mammalian two-hybrid system. Mutant viruses containing NES2 alterations generated by reversed genetics exhibit reduced viral growth and delay in the nuclear export of viral ribonucleoproteins (vRNPs). The NES2 motif is highly conserved in the influenza A and B viruses. The results demonstrate that leucine-rich NES2 is involved in the nuclear export of vRNPs and contributes to the understanding of nucleocytoplasmic transport of influenza virus vRNPs.  相似文献   

13.
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.  相似文献   

14.
15.
Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two proteins. Rather, Nullbasic affects subcellular localization of cellular proteins that regulate Rev trafficking. In particular, Nullbasic induced redistribution of exportin 1 (CRM1), nucleophosmin (B23) and nucleolin (C23) from the nucleolus to the nucleus when Rev was coexpressed, but never in its absence. Inhibition of the Rev:CRM1 interaction by leptomycin B or a non-interacting RevM10 mutant completely blocked redistribution of Rev by Nullbasic. Finally, Nullbasic did not inhibit importin β- or transportin 1-mediated nuclear import, suggesting that cytoplasmic accumulation of Rev was due to increased export by CRM1. Overall, our data support the conclusion that CRM1-dependent subcellular redistribution of Rev from the nucleolus by Nullbasic is not through general perturbation of either nuclear import or export. Rather, Nullbasic appears to interact with and disrupt specific components of a Rev trafficking complex required for its nucleocytoplasmic shuttling and, in particular, its nucleolar accumulation.  相似文献   

16.
17.
We previously showed that calcineurin B homologous protein 1 (CHP1) interacts with nuclear apoptosis-inducing protein kinase DRAK2, and that overexpression of DRAK2 induces the nuclear accumulation of CHP1, although CHP1 usually resides in the cytoplasm [Matsumoto et al. (2001) J. Biochem. 130, 217-225]. Here we show that CHP1 has two functional nuclear export signal (NES) sequences in its carboxyl-terminal region. Treatment of several cell lines with leptomycin B, a specific inhibitor of CRM1-dependent nuclear export, induces the nuclear accumulation of CHP1. Moreover, CHP1-GFP fusion proteins with deletions or point mutations affecting the two putative NES sequences accumulate in the nucleus to a greater extent than wild-type CHP1-GFP. Tagging glutathione S-transferase-GFP fusion protein with each NES sequence caused a shift in their intracellular localization from all over the cells to the cytoplasm. These results suggest that after CHP1 has entered the nucleus, it is exported to the cytoplasm in an NES-dependent manner.  相似文献   

18.
19.
Research on the export of proteins and nucleic acids from the nucleus to the cytoplasm has greatly gained from the discovery that the actinobacterial toxin leptomycin B (LMB) specifically inactivates the export receptor chromosomal region maintenance 1 (CRM1). Recently, it was shown that myxobacterial cytotoxins, named ratjadones (RATs), also bind to CRM1 and inhibit nuclear export. However, the reaction mechanism of RATs was not resolved. Here, we show that LMB and RAT A employ the same molecular mechanism to inactivate CRM1. Alkylation of residue Cys528 of CRM1 determines both LMB and RAT sensitivity and prevents nuclear export of CRM1 cargo proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号