首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

2.
Molecular basis of co-operativity in protein folding.   总被引:4,自引:0,他引:4  
The folding/unfolding transition of proteins is a highly co-operative process characterized by the presence of very few or no thermodynamically stable partially folded intermediate states. The purpose of this paper is to present a thermodynamic formalism aimed at describing quantitatively the co-operative folding behavior of proteins. In order to account for this behavior, a hierarchical algorithm aimed at evaluating the folding/unfolding partition function has been developed. This formalism defines the partition function in terms of multiple levels of interacting co-operative folding units. A co-operative folding unit is defined as a protein structural element that exhibits two-state folding/unfolding behavior. At the most fundamental level are those structural elements that behave co-operatively as a result of purely local interactions. Higher-order co-operative folding units are formed through interactions between different structural elements. The hierarchical formalism utilizes the crystallographic structure of the protein as a template to generate partially folded conformations defined in terms of co-operative folding units. The Gibbs free energy of those states and their corresponding statistical weights are then computed using experimental energetic parameters determined calorimetrically. This formalism has been applied to the case of myoglobin. It is shown that the hierarchical partition function correctly predicts the presence, energetics and co-operativity of the heat and cold denaturation transitions. The major contribution to the co-operative folding behavior arises from the solvent exposure of non-polar residues located in regions complementary to those that have undergone unfolding. This entropically uncompensated and energetically unfavorable solvent exposure characterizes all partially folded states but not the unfolded state, thus minimizing the population of partially folded intermediates throughout the folding/unfolding transition.  相似文献   

3.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

4.
Understanding the origins of cooperativity in proteins remains an important topic in protein folding. This study describes experimental folding/unfolding equilibrium and kinetic studies of the engineered protein Ubq-UIM, consisting of ubiquitin (Ubq) fused to the sequence of the ubiquitin interacting motif (UIM) via a short linker. Urea-induced folding/unfolding profiles of Ubq-UIM were monitored by far-UV circular dichroism and fluorescence spectroscopies and compared to those of the isolated Ubq domain. It was found that the equilibrium data for Ubq-UIM is inconsistent with a two-state model. Analysis of the kinetics of folding shows similarity in the folding transition state ensemble between Ubq and Ubq-UIM, suggesting that formation of Ubq domain is independent of UIM. The major contribution to the stabilization of Ubq-UIM, relative to Ubq, was found to be in the rates of unfolding. Moreover, it was found that the kinetic m-values for Ubq-UIM unfolding, monitored by different probes (far-UV circular dichroism and fluorescence spectroscopies), are different; thereby, further supporting deviations from a two-state behavior. A thermodynamic linkage model that involves four states was found to be applicable to the urea-induced unfolding of Ubq-UIM, which is in agreement with the previous temperature-induced unfolding study. The applicability of the model was further supported by site-directed variants of Ubq-UIM that have altered stabilities of Ubq/UIM interface and/or stabilities of individual Ubq- and UIM-domains. All variants show increased cooperativity and one variant, E43N_Ubq-UIM, appears to behave very close to an equilibrium two-state.  相似文献   

5.
The cooperative nature of the protein folding process is independent of the characteristic fold and the specific secondary structure attributes of a globular protein. A general folding/unfolding model should, therefore, be based upon structural features that transcend the peculiarities of α-helices, β-sheets, and other structural motifs found in proteins. The studies presented in this paper suggest that a single structural characteristic common to all globular proteins is essential for cooperative folding. The formation of a partly folded state from the native state results in the exposure to solvent of two distinct regions: (1) the portions of the protein that are unfolded; and (2) the “complementary surfaces,” located in the regions of the protein that remain folded. The cooperative character of the folding/unfolding transition is determined largely by the energetics of exposing complementary surface regions to the solvent. By definition, complementary regions are present only in partly folded states; they are absent from the native and unfolded states. An unfavorable free energy lowers the probability of partly folded states and increases the cooperativity of the transition. In this paper we present a mathematical formulation of this behavior and develop a general cooperative folding/unfolding model, termed the “complementary region” (CORE) model. This model successfully reproduces the main properties of folding/unfolding transitions without limiting the number of partly folded states accessible to the protein, thereby permitting a systematic examination of the structural and solvent conditions under which intermediates become populated. It is shown that the CORE model predicts two-state folding/unfolding behavior, even though the two-state character is not assumed in the model. © 1993 Wiley-Liss, Inc.  相似文献   

6.
《Journal of molecular biology》2019,431(8):1540-1564
Protein folding/unfolding is a complicated process that defies high-resolution characterization by experimental methods. As an alternative, atomistic molecular dynamics simulations are now routinely employed to elucidate and magnify the accompanying conformational changes and the role of solvent in the folding process. However, the level of detail necessary to map the process at high spatial–temporal resolution provides an overwhelming amount of data. As more and better tools are developed for analysis of these large data sets and validation of the simulations, one is still left with the problem of visualizing the results in ways that provide insight into the folding/unfolding process. While viewing and interrogating static crystal structures has become commonplace, more and different approaches are required for dynamic, interconverting, unfolding, and refolding proteins. Here we review a variety of approaches, ranging from straightforward to complex and unintuitive for multiscale analysis and visualization of protein folding and unfolding.  相似文献   

7.
Theoretical work has suggested the existence of solvation/desolvation barriers in protein folding/unfolding processes. We propose that the energetic and structural consequences of such barriers for the folding transition state can be assessed from experimental unfolding rates using well-established structure-energetics relationships. For a set of proteins of size within the 60-130 number-of-residues range, we find energetic effects associated to solvation/desolvation on the order of 10(2) kJ/mol. This supports that the folding transition states may be characterized by large networks of water-unsatisfied, broken internal contacts. In terms of buried surface, we estimate the typical network size to be on the order of several thousands of A2, or approximately 50% of the total change in accessible surface area upon unfolding. The analyses reported here thus suggest a clear structural picture for the different energetic balance of native and folding transition states.  相似文献   

8.
N52I iso-2 cytochrome c is a variant of yeast iso-2 cytochrome c in which asparagine substitutes for isoleucine 52 in an alpha helical segment composed of residues 49-56. The N52I substitution results in a significant increase in both stability and cooperativity of equilibrium unfolding, and acts as a "global suppressor" of destabilizing mutations. The equilibrium m-value for denaturant-induced unfolding of N52I iso-2 increases by 30%, a surprisingly large amount for a single residue substitution. The folding/unfolding kinetics for N52I iso-2 have been measured by stopped-flow mixing and by manual mixing, and are compared to the kinetics of folding/unfolding of wild-type protein, iso-2 cytochrome c. The results show that the observable folding rate and the guanidine hydrochloride dependence of the folding rate are the same for iso-2 and N52I iso-2, despite the greater thermodynamic stability of N52I iso-2. Thus, there is no linear free-energy relationship between mutation-induced changes in stability and observable refolding rates. However, for N52I iso-2 the unfolding rate is slower and the guanidine hydrochloride dependence of the unfolding rate is smaller than for iso-2. The differences in the denaturant dependence of the unfolding rates suggest that the N52I substitution decreases the change in the solvent accessible hydrophobic surface between the native state and the transition state. Two aspects of the results are inconsistent with a two-state folding/unfolding mechanism and imply the presence of folding intermediates: (1) observable refolding rate constants calculated from the two-state mechanism by combining equilibrium data and unfolding rate measurements deviate from the observed refolding rate constants; (2) kinetically unresolved signal changes ("burst phase") are observed for both N52I iso-2 and iso-2 refolding. The "burst phase" amplitude is larger for N52I iso-2 than for iso-2, suggesting that the intermediates formed during the "burst phase" are stabilized by the N52I substitution.  相似文献   

9.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

10.
We have performed 128 folding and 45 unfolding molecular dynamics runs of chymotrypsin inhibitor 2 (CI2) with an implicit solvation model for a total simulation time of 0.4 microseconds. Folding requires that the three-dimensional structure of the native state is known. It was simulated at 300 K by supplementing the force field with a harmonic restraint which acts on the root-mean-square deviation and allows to decrease the distance to the target conformation. High temperature and/or the harmonic restraint were used to induce unfolding. Of the 62 folding simulations started from random conformations, 31 reached the native structure, while the success rate was 83% for the 66 trajectories which began from conformations unfolded by high-temperature dynamics. A funnel-like energy landscape is observed for unfolding at 475 K, while the unfolding runs at 300 K and 375 K as well as most of the folding trajectories have an almost flat energy landscape for conformations with less than about 50% of native contacts formed. The sequence of events, i.e., secondary and tertiary structure formation, is similar in all folding and unfolding simulations, despite the diversity of the pathways. Previous unfolding simulations of CI2 performed with different force fields showed a similar sequence of events. These results suggest that the topology of the native state plays an important role in the folding process.  相似文献   

11.
The α/β-mixed dimeric protein Ssh10b from the hyperthermophile Sulfolobus shibatae is a member of the Sac10b family that is thought to be involved in chromosomal organization or DNA repair/recombination. The equilibrium unfolding/refolding of Ssh10b induced by denaturants and heat was fully reversible, suggesting that Ssh10b could serve as a good model for folding/unfolding studies of protein dimers. Here, we investigate the folding/unfolding kinetics of Ssh10b in detail by stopped-flow circular dichroism (SF-CD) and using GdnHCl as denaturant. In unfolding reactions, the native Ssh10b turned rapidly into fully unfolded monomers within the stopped-flow dead time with no detectable kinetic intermediate, agreeing well with the results of equilibrium unfolding experiments. In refolding reactions, two unfolded monomers associate in the burst phase to form a dimeric intermediate that undergoes a further, slower, first-order folding process to form the native dimer. Our results demonstrate that the dimerization is essential for maintaining the native tertiary interactions of the protein Ssh10b. In addition, folding mechanisms of Ssh10b and several other α/β-mixed or pure β-sheet proteins are compared.  相似文献   

12.
The membrane-associated folding/unfolding of pH (low) insertion peptide (pHLIP) provides an opportunity to study how sequence variations influence the kinetics and pathway of peptide insertion into bilayers. Here, we present the results of steady-state and kinetics investigations of several pHLIP variants with different numbers of charged residues, with attached polar cargoes at the peptide's membrane-inserting end, and with three single-Trp variants placed at the beginning, middle, and end of the transmembrane helix. Each pHLIP variant exhibits a pH-dependent interaction with a lipid bilayer. Although the number of protonatable residues at the inserting end does not affect the ultimate formation of helical structure across a membrane, it correlates with the time for peptide insertion, the number of intermediate states on the folding pathway, and the rates of unfolding and exit. The presence of polar cargoes at the peptide's inserting end leads to the appearance of intermediate states on the insertion pathway. Cargo polarity correlates with a decrease of the insertion rate. We conclude that the existence of intermediate states on the folding and unfolding pathways is not mandatory and, in the simple case of a polypeptide with a noncharged and nonpolar inserting end, the folding and unfolding appears as an all-or-none transition. We propose a model for membrane-associated insertion/folding and exit/unfolding and discuss the importance of these observations for the design of new delivery agents for direct translocation of polar therapeutic and diagnostic cargo molecules across cellular membranes.  相似文献   

13.
The stability of a protein or of its folding intermediates is frequently characterized by its resistance to chemical and/or thermal denaturation. The folding/unfolding process is generally followed by spectroscopic methods such as absorbance, fluorescence, circular dichroism spectroscopy, etc. Here, we demonstrate a new method, by using HPLC, for determining the thermal unfolding transitions of disulfide-containing proteins and their structured folding intermediates. The thermal transitions of a model protein, ribonuclease A (RNase A), and a recently found unfolding intermediate of onconase (ONC), des [30-75], have been estimated by this method. Finally, the advantages of this method over traditional techniques are discussed by providing specific examples.  相似文献   

14.
The multi-domain enzyme isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix was studied by denaturant-induced unfolding. At pH 7.5, changes in circular dichroism ellipticity and intrinsic fluorescence showed a complex unfolding transition, whereas at pH 3.0, an apparently two-state and highly reversible unfolding occurred. Analytical ultracentrifugation revealed the dissociation from dimer to monomer at pH 3.0. The thermodynamic and kinetic stability were studied at pH 3.0 to explore the role of inter-domain interactions independently of inter-subunit interplay on the wild type and R211M, a mutant where a seven-membered inter-domain ionic network has been disrupted. The unfolding and folding transitions occurred at slightly different denaturant concentrations even after prolonged equilibration time. The difference between the folding and the unfolding profiles was decreased in the mutant R211M. The apparent Gibbs free energy decreased approximately 2 kcal/mol and the unfolding rate increased 4.3-fold in the mutant protein, corresponding to a decrease in activation free energy of unfolding of 0.86 kcal/mol. These results suggest that the inter-domain ionic network might be responsible for additional stabilization through a significant kinetic barrier in the unfolding pathway that could also explain the larger difference observed between the folding and unfolding transitions of the wild type.  相似文献   

15.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

16.
Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.  相似文献   

17.
Unfolding and refolding kinetics of human FKBP12 C22A were monitored by fluorescence emission over a wide range of urea concentration in the presence and absence of protecting osmolytes glycerol, proline, sarcosine and trimethylamine-N-oxide (TMAO). Unfolding is well described by a mono-exponential process, while refolding required a minimum of two exponentials for an adequate fit throughout the urea concentration range considered. The bi-exponential behavior resulted from complex coupling between protein folding, and prolyl isomerization in the denatured state in which the urea-dependent rate constant for folding was greater than, equal to, and less than the rate constants for prolyl isomerization within the urea concentration range of zero to five molar. Amplitudes and the observed folding and unfolding rate constants were fitted to a reversible three-state model composed of two sequential steps involving the native state and a folding-competent denatured species thermodynamically linked to a folding-incompetent denatured species. Excellent agreement between thermodynamic parameters for FKBP12 C22A folding calculated from the kinetic parameters and those obtained directly from equilibrium denaturation assays provides strong support for the applicability of the mechanism, and provides evidence that FKBP12 C22A folding/unfolding is two-state, with prolyl isomer heterogeneity in the denatured ensemble. Despite the chemical diversity of the protecting osmolytes, they all exhibit the same kinetic behavior of increasing the rate constant of folding and decreasing the rate constant for unfolding. Osmolyte effects on folding/unfolding kinetics are readily explained in terms of principles established in understanding osmolyte effects on protein stability. These principles involve the osmophobic effect, which raises the Gibbs energy of the denatured state due to exposure of peptide backbone, thereby increasing the folding rate. This effect also plays a key role in decreasing the unfolding rate when, as is often the case, the activated complex exposes more backbone than is exposed in the native state.  相似文献   

18.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

19.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   

20.
Hummer G  García AE  Garde S 《Proteins》2001,42(1):77-84
We study the reversible folding/unfolding of short Ala and Gly-based peptides by molecular dynamics simulations of all-atom models in explicit water solvent. A kinetic analysis shows that the formation of a first alpha-helical turn occurs within 0.1-1 ns, in agreement with the analyses of laser temperature jump experiments. The unfolding times exhibit Arrhenius temperature dependence. For a rapidly nucleating all-Ala peptide, the helix nucleation time depends only weakly on temperature. For a peptide with enthalpically competing turn-like structures, helix nucleation exhibits an Arrhenius temperature dependence, corresponding to the unfolding of enthalpic traps in the coil ensemble. An analysis of structures in a "transition-state ensemble" shows that helix-to-coil transitions occur predominantly through breaking of hydrogen bonds at the helix ends, particularly at the C-terminus. The temperature dependence of the transition-state ensemble and the corresponding folding/unfolding pathways illustrate that folding mechanisms can change with temperature, possibly complicating the interpretation of high-temperature unfolding simulations. The timescale of helix formation is an essential factor in molecular models of protein folding. The rapid helix nucleation observed here suggests that transient helices form early in the folding event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号