首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

2.
Antioxidant reactions of mixtures of vitamin E, vitamin C and phospholipids in autoxidizing lipids at 90°C have been studied by ESR spectroscopy. When the phospholipid contained a tertiary amine (e.g. phosphatidylcholine), the vitamin C and the vitamin E radicals were successively observed as these two vitamins were sequentially oxidised during lipid oxidation. In the presence of the primary amine contained in phosphatidylserine, the vitamin E oxidation was delayed for a few hours. In this case neither the vitamin C, nor the vitamin E radicals but a nitroxide radical derived from the phospholipid was observed. Similar results to those obtained with PS were obtained in the presence of either phospha-tidylethanolamine or soybean lecithin. The participation in the radical reactions of phospholipids possessing a primary amine can therefore explain the synergistic effect of these phospholipids in a mixture of vitamins E and C.  相似文献   

3.
1. The aim of this work was to evaluate the relationships between free radical scavengers and lipid peroxidation in the common mussel Mytilus edulis. 2. Mussels were exposed to compounds known for their ability to produce free radicals (carbon tetrachloride, CCl4) and reactive oxygen species via redox cycling (menadione) and the effects on digestive gland, gills and remaining tissues were studied. 3. Lipid peroxidation parameters and the status of free radical scavengers (glutathione, vitamins A, E and C) were affected more by exposure to menadione than to CCl4. 4. The observed changes in the free radical scavengers content are indicative of a role in detoxication of damaging reactive species.  相似文献   

4.
《Free radical research》2013,47(5):337-345
Abstract

The major causes for cataract formation are free radicals, and these free radicals are neutralized by the presence of endogenous antioxidants in the eye. Using xenobiotics, it has been confirmed that free radicals mediate the formation of cataract. Two cataract model-selenite model and the diabetic cataract model-have been developed to study the pathophysiology of cataract formation due to free radicals and the role of antioxidants during the process of cataractogenesis. This review focuses on natural compounds with antioxidant properties that could actually be applied as an interventional strategy on a large scale and are also relatively inexpensive. A brief overview of plants with antioxidant properties that in addition possess potential anti-cataract properties has been discussed. In addition to plants, three natural compounds (curcumin, vitamin C and vitamin E), on which a lot of data exist showing anti-cataract and antioxidant activities, have also been discussed. These antioxidants can be supplemented in the diet for a better defence against free radicals. Studies on vitamin C and vitamin E have proved that they are capable of preventing lipid peroxidation, thereby preventing the generation of free radicals, but their efficacy as anti-cataract agent is questionable. Unlike vitamins C and E, curcumin is well established as an anti-cataract agent, but the issue of curcumin bioavailability is yet to be addressed. Nanotechnology proves to be a promising area in increasing the curcumin bioavailability, but still a lot more research needs to be done before the use of curcumin as an effective anti-cataract agent for humans.  相似文献   

5.
The purpose of this study was to confirm the photoprotective effect on skin of vitamins A and E, due to inhibition of polyamine synthesis and production of free radicals. These variables were measured in the lumbar epidermis of the female hairless mouse subjected to UVA + B irradiation. Polyamines were assayed in epidermal homogenate by HPLC, and production of oxygenated free radicals was determined by spectrofluorometric assay of malonyl dialdehyde. It was determined that butyl-hydroxy-toluene and vitamin E inhibited production of free radicals (56% and 60%, respectively) and caused a significant reduction in polyamine biosynthesis (P less than 0.01), whereas the inhibitory effect of malonyl dialdehyde induced by vitamin A (30%) had no associated effect on polyamine metabolism.  相似文献   

6.
In the present study we examined immobilization stress-induced antioxidant defense changes in rat plasma and also observed the antioxidant effects of pre and post vitamins A, E and C administration (15 mg/Kg of body weight) individually and in combination (vit E + C) on these alterations.Following immobilization stress the circulating activities of superoxide dismutase, catalase and glutathione-S-transferase were decreased, while the level of thiobarbituric acid reactive substances (TBARS) was increased as compared to non-stressed control rats.Post treatment with individual vitamins A, E and C (after exposure to stress) resulted in a less marked alteration of plasma TBARS levels and activities of SOD, GST and catalase as compared to pre vitamin stress or stress alone treatments. Both pre and post vitamin treatments were effective in preventing stress induced derangement of free radical metabolism with a relative dominance by latter. The combined treatment with vitamin E and C did not show any additive antioxidant effect on restraint stress induced altered free radical metabolism, rather a predominant effect similar to vitamin E alone was observed. The prevention of oxidative stress generated in response to restraint stress by the vitamins can be summarized as: vitamin (E + C) i.e. vit E > vit C > vit A, thus combined vitamin (E + C) treatment though showed maximum preventive effect, but was similar to vitamin E treatment alone, in terms of the circulating activities of SOD, GST, catalase and TBARS levels.  相似文献   

7.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

8.
Under the conditions of this assay, antioxidants that react rapidly with peroxy free radicals (e.g., ascorbate, vitamin E analogs, urate), protect phycoerythrin completely from damage by such radicals generated by thermal decomposition of 2,2'-azobis(2-amidinopropane); other compounds provide partial concentration-dependent protection. Change in phycoerythrin fluorescence emission with time provides a measure of the rate of free radical damage. The assay exploits the unusual reactivity of phycoerythrin toward these peroxy radicals. On a molar basis, phycoerythrin reacts with these radicals over 100-fold slower than do ascorbate or vitamin E analogs, but over 60-fold faster than other proteins. Applications of this assay to the estimation of the peroxy radical scavenging capacity of human plasma are described, and to the comparison of the scavenging properties of several proteins and of DNA, of vitamins and their derivatives, of catecholamine neurotransmitters, and of a variety of other low molecular weight biological compounds.  相似文献   

9.
Brain concentrations of the antioxidant vitamins C and E decreased following unilateral carotid occlusion and reperfusion for 2 or 24 h in gerbils. Administration of the 21-aminosteroid inhibitor of lipid peroxidation, tirilazad mesylate (U74006F), prevented the decrease in level of both of these vitamins following 2 h of reperfusion. After 24 h of reperfusion, however, alpha-tocopherol (vitamin E) continued to be protected, but ascorbic acid (vitamin C) showed a pronounced decrease in content. The changes in concentrations of these vitamins are consistent with U74006F acting to inhibit peroxidation in the CNS by scavenging of lipid peroxyl radicals and suggest that, in the presence of this agent, injury-induced depletion of ascorbic acid may occur without irreversible tissue damage.  相似文献   

10.
Lipid peroxidation may be involved in cancer and essential nutrients that can scavenge free radicals, such as vitamins E and C, operate in concert. Levels of antioxidant vitamins E and C were estimated in 50 patients with oral cancer and 24 healthy persons served as control. Significantly lower levels of vitamins E and C were observed in oral cancer patients as compared to controls (P < 0.011). Antioxidant nutrients may be utilized to a greater extent in oral cancer patients to counteract free radical-mediated cell disturbances, resulting in a reduction in salivary antioxidant levels.  相似文献   

11.
Epirubicin fights cancer through topoisomerase II inhibition, hence producing DNA strand breaks that finally lead to cell apoptosis. But anthracyclines produce free radicals that may explain their adverse effects. Dexrazoxane--an iron chelator--was proven to decrease free radical production and anthracycline cardiotoxicity. In this article, we report the concentrations of cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) relative to 2'-deoxyguanosine (dGuo), and comet assay results from a study including 20 cancer patients treated with epirubicin. Plasma concentrations of vitamins A, E, C and carotenoids are also reported. All data were obtained before and immediately after epirubicin infusion. The ratios of 8-Oxo-dGuo to dGuo were measured in leukocyte DNA by HPLC-coulometry after NaI extraction of nucleic acids. Vitamins A and E and carotenoids were measured by HPLC-spectrophotometry. Vitamin C was measured by HPLC-spectrofluorimetry. Median 8-oxo-dGuo/dGuo ratios increased significantly from 0.34 to 0.48 lesions per 100,000 bases while per cent of tail DNA increased from 3.47 to 3.94 after chemotherapy 8-Oxo-dGuo/dGuo and per cent of tail DNA medians remained in the normal range. Only vitamin C decreased significantly from 55.4 to 50.3 microM Decreases in vitamins A, E, lutein and zeaxanthin were not significant, but concentrations were below the lower limit of the normal range both before and after chemotherapy. Only the correlation between comet assay results and vitamin C concentrations was significant (rho =-0.517, p = 0.023). This study shows that cellular DNA is damaged by epirubicin-generated free radicals which produce the mutagenic modified base 8-oxo-dGuo and are responsible for strand breaks. However, strand breaks are created not only by free radicals but also by topoisomerase II inhibition. In a previous study we did not find any significant change in urinary 8-oxo-dGuo excretion after adriamycin treatment. However, 8-oxo-dGuo may have increased at the end of urine collection as DNA repair and subsequent kidney elimination are relatively slow processes. In another study, authors used GC-MS to detect 8-oxo-dGuo in DNA and did not find any change after prolonged adriamycin infusion. Reasons for these apparent discrepancies are discussed.  相似文献   

12.
Since oxygen free radicals exert a noxious effect on cell functions, the purpose of the study was to examine the influence of the antioxidant vitamins C and E on the phagocytic capacity, apoptotic death, production of TNFalpha and IL-10 by human peripheral blood cells. In addition, an attempt to find a correlation between the effect of these vitamins on apoptosis and DNA synthesis was carried out. Peripheral white blood cells obtained from 27 healthy volunteers were incubated for 24 hr without and with vitamins C and E at doses extrapolated from clinical practice. Incubation of cells with vit. C caused a significant increase in the number of latex particles internalized by each individual polymorphonuclear cell, but not by monocytes. Both vitamins did not change the number of cells capable for phagocytosis. By the method of propidium iodide staining for detection of apoptosis, incubation of the cells with 0.2 mg/mL vit. C for 24 hrs caused a 39% increase in the percentage of apoptotic cells, as compared to those kept at the same incubation conditions without vitamin. 0.125 mg/mL of vit. E did not affect the percentage of apoptotic cells. On the other hand, applying the caspase-3 method for apoptosis detection, vitamins C and E did not affect the caspase-3 activity. Both vitamins caused an inhibition of 3H-TdR incorporation, which was dose-dependent for vit. C. Concentrations of the vitamins lower than those mentioned above did not alter DNA synthesis. While TNFalpha production was not affected by both vitamins, the spontaneous secretion of IL-10 was dose-dependently reduced by vit. C but remained unaltered following incubation with vit. E. The results, although observed in vitro, might be of importance when those vitamins are administered to healthy subjects.  相似文献   

13.
Euglena gracilis Z is one of the few microorganisms which simultaneously produces antioxidant vitamins such as beta-carotene and vitamins C and E. Photoheterotrophically cultured E. gracilis Z produced larger levels of biomass but with a lower content of antioxidant vitamins than photoautotrophically grown cultures. For efficient production of these vitamins, a two-step culture was performed. Cells were grown photoheterotrophically and then transferred to photoautotrophic conditions. When E. gracilis Z cells were grown in fed-batch culture under photoheterotrophic conditions, their density reached 19 g/L after 145 h. Subsequent transfer of these cells to photoautotrophic conditions increased vitamin content, enhancing the total vitamin yields, which were 71.0 mg/L of beta-carotene, 30.1 mg/L of vitamin E, and 86.5 mg/L of vitamin C. (c) 1997 John Wiley & Sons, Inc.  相似文献   

14.
Originally thought of as simply damaging or toxic "accidents" of in vivo chemistry, free radicals are becoming increasingly recognized as redox signaling molecules implicit in cellular homeostasis. Indeed, at the vascular level, it is plausible that oxidative stress plays a regulatory role in normal vascular function. Using electron paramagnetic resonance (EPR) spectroscopy, we sought to document the ability of an oral antioxidant cocktail (vitamins C, E, and alpha-lipoic acid) to reduce circulating free radicals, and we employed Doppler ultrasound to examine the consequence of an antioxidant-mediated reduction in oxidative stress on exercise-induced vasodilation. A total of 25 young (18-31 yr) healthy male subjects partook in these studies. EPR spectroscopy revealed a reduction in circulating free radicals following antioxidant administration at rest ( approximately 98%) and as a consequence of exercise ( approximately 85%). Plasma total antioxidant capacity and vitamin C both increased following the ingestion of the antioxidant cocktail, whereas vitamin E levels were not influenced by the ingestion of the antioxidants. Brachial artery vasodilation during submaximal forearm handgrip exercise was greater with the placebo (7.4 +/- 1.8%) than with the antioxidant cocktail (2.3 +/- 0.7%). These data document the efficacy of an oral antioxidant cocktail in reducing free radicals and suggest that, in a healthy state, the aggressive disruption of the delicate balance between pro- and antioxidant forces can negatively impact vascular function. These findings implicate an exercise-induced reliance upon pro-oxidant-stimulated vasodilation, thereby revealing an important and positive vascular role for free radicals.  相似文献   

15.
  • 1.1. The aim of this work was to evaluate the relationships between free radical scavengers and lipid peroxidation in the common mussel Mytilus edulis.
  • 2.2. Mussels were exposed to compounds known for their ability to produce free radicals (carbon tetrachloride, CCl4) and reactive oxygen species via redox cycling (menadione), and the effects on digestive gland, gills and remaining tissues were studied.
  • 3.3. Lipid peroxidation parameters and the status of free radical scavengers (glutathione, vitamins A, E and C) were affected more by exposure to menadione than to CCl4.
  • 4.4. The observed changes in the free radical scavengers content are indicative of a role in detoxication of damaging reactive species.
  相似文献   

16.
Toxicity of the pesticide quinalphos may comprise secondary, delayed effects by its main metabolite 2-hydroxyquinoxaline (HQO). We demonstrate that HQO can destroy photocatalytically vitamins C and E, catecholamines, serotonin, melatonin, the melatonin metabolite AMK (N(1)-acetyl-5-methoxykynuramine), and unsubstituted and substituted anthranilic acids when exposed to visible light. In order to avoid HQO-independent ascorbate oxidation by light and to exclude actions by hydroxyl radicals, experiments on this vitamin were carried out in ethanolic solutions. Other substances tested (vitamin E, melatonin, anthranilic acids) were also photocatalytically destroyed by HQO in ethanol. After product analyses had indicated that HQO was not, or only poorly, degraded in the light, despite its catalytic action on other compounds, we followed directly the time course of HQO and ascorbate concentrations in ethanol. While ascorbate was largely destroyed, no change in HQO was demonstrable within 2 h of incubation. Destruction was not prevented by the singlet oxygen quencher DABCO. Obviously, HQO is capable of undergoing a process of organic redox cycling, perhaps via an intermediate quinoxaline-2-oxyl radical. Health problems from HQO intoxication may not only arise from the loss of valuable biomolecules, such as antioxidant vitamins and biogenic amines, but also from the formation of potentially toxic products. Dimerization and oligomerization are involved in several oxidation processes catalyzed by HQO, especially in the indoleamines, in dopamine, and presumably also in vitamin E. Melatonin oxidation by HQO did not only lead to the well-known - and usually protective - metabolite AFMK (N(1)-acetyl-N(2)-formyl-5-methoxykynuramine), but also to a high number of additional products, among them dimers and trimers. DABCO did not prevent melatonin destruction, but changed the spectrum of products. Serotonin was preferentially converted to a dimer, which can further oligomerize. Several indole dimers are known to be highly neurotoxic, as well as oxidation products formed from catecholamines via the adrenochrome/noradrenochrome pathway. Destruction of melatonin may cause deficiencies in circadian physiology, in immune functions and in antioxidative protection.  相似文献   

17.
18.
Free radicals are involved in the pathogenesis of acute liver injury induced by thioacetamide (TAA). We investigated the effects of S-adenosylmethionine (SAMe) combined with/without vitamins C and E on TAA-induced acute liver injury in rats. TAA was given intraperitoneally (200 mg kg-1). Antioxidant treatments (SAMe, 25 mg kg-1; vitamin C, 100 mg kg-1; vitamin E, 200 mg kg-1, intraperitoneal) were given 1 h later. Liver histology, enzymology, and ability to release hepatic insulin-sensitizing substance (HISS) were assessed. TAA caused liver tissue injury, increased liver enzymes, and decreased insulin sensitivity (p<0.01). Blockade of HISS release by atropine did not further decrease insulin sensitivity in rats with TAA insult, indicating that the decrease in insulin sensitivity was HISS dependent. Treatment with SAMe alone or vitamins C+E slightly improved liver histology but not the changes in liver enzymes and insulin sensitivity. Combined treatment with SAMe plus vitamins C+E greatly protected the liver from tissue injury, the increase in liver enzymes, and the decrease in insulin sensitivity. In conclusion, acute liver injury causes HISS-dependent insulin resistance (HDIR). There are synergistic antioxidative effects among the antioxidants, SAMe and vitamins C and E, that protect the liver from TAA-induced HDIR, suggesting that antioxidant treatment may best be done using a balanced "cocktail."  相似文献   

19.
Detrimental effects of oxygen-derived free radicals on embryos during culture have been demonstrated in several species. Vitamin E occurs naturally in cell membranes and protects cells from oxidative stress. Under some conditions, vitamin C acts synergistically to enhance the antioxidant effects of vitamin E, a benefit that may be further enhanced by EDTA. The present experiments concerned culture of bovine embryos derived from in vitro-matured, fertilized oocytes with vitamin E, vitamin C, and EDTA in a chemically defined culture medium + 0.2% BSA at 5% O(2), 5% CO(2), and 90% N(2). In the first experiment, more zygotes developed to expanded blastocysts (17%, n = 224, P < 0.05) when culture medium contained 100 microM vitamin E than in control medium (11%, n = 234). Development to early, expanded, and hatched blastocysts was lower with vitamins E and C combined than with vitamin E alone (15%, 9%, and 2% vs. 24%, 17%, and 5%, respectively; P < 0.05), as was the mean number of cells per blastocyst (56 vs. 84, P < 0.05). Addition of EDTA (3 microM) failed to improve development over that in culture with vitamin E + vitamin C. In experiment 2, in vitro-produced embryos cultured 5.5 days in medium with or without 100 microM vitamin E were transferred nonsurgically to recipient cows and heifers and then collected nonsurgically 7 days later. Embryos cultured with vitamin E (n = 37) were approximately 63% larger in surface area than controls (1.16 mm(2) vs. 0.71 mm(2) surface area; n = 27, P < 0.04).  相似文献   

20.
Vitamin E and vitamin C are involved in the defense of the body against free radical and reactive oxygen molecule induced damage. The best characterized biological damage caused by radicals is known as lipid peroxidation. Free radical formation is known to play a major role in the development of cancer. In this study, we measured plasma levels of thiobarbituric acid reactive substances (TBARS) as a marker of lipid peroxidation, cholesterol, and vitamins E and C as antioxidants in male patients with colorectal tumors (n = 20, 54.5 ± 8.3 years). The patients had significantly higher plasma TBARS levels than age-matched healthy subjects (p < 0.001). Plasma vitamin C levels were significantly lower in the patients compared to the healthy subjects (p < 0.001). On the other hand, plasma vitamin E levels in the patients were similar to those of healthy subjects. Plasma cholesterol levels were also found to be significantly elevated in patients with colorectal tumors (p < 0.001). Our results suggest that there is an imbalance between oxidant and antioxidant status in tumor genesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号