首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancer risk from radiation exposure has been analyzed in the cohort of Japanese a-bomb survivors using empirical models and mechanistic two-step clonal expansion (TSCE) models with incidence data from 1958 to 1998. TSCE models rely on a phenomenological representation of cell transition processes on the path to cancer. They describe the data as good as empirical models and this fact has been exploited for risk assessment. Adequate models of both types have been selected with a statistical protocol based on parsimonious parameter deployment and their risk estimates have been combined using multi-model inference techniques. TSCE models relate the radiation risk to cell processes which are controlled by age-increasing rates of initiating mutations and by changes in hormone levels due to menopause. For exposure at young age, they predict an enhanced excess relative risk (ERR) whereas the preferred empirical model shows no dependence on age at exposure. At attained age 70, the multi-model median of the ERR at 1 Gy decreases moderately from 1.2 Gy−1 (90% CI 0.72; 2.1) for exposure at age 25 to a 30% lower value for exposure at age 55. For cohort strata with few cases, where model predictions diverge, uncertainty intervals from multi-model inference are enhanced by up to a factor of 1.6 compared to the preferred empirical model. Multi-model inference provides a joint risk estimate from several plausible models rather than relying on a single model of choice. It produces more reliable point estimates and improves the characterization of uncertainties. The method is recommended for risk assessment in practical radiation protection.  相似文献   

2.
3.
Lung cancer mortality among 5058 male workers of the Mayak Production Association has been analyzed with emphasis on the interaction of smoking and radiation exposure by using the two-step clonal expansion (TSCE) model of carcinogenesis. The cohort consists of all Mayak workers with known smoking status, who were employed in the period 1948–1972, and who either had the plutonium concentration in urine measured or who worked in the reactors, where plutonium exposure was negligible. Those who died during the first two years after the first urine sampling were excluded. The follow-up extended until the end of 1998. During this time, 2176 workers died, including 244 lung cancer cases. Mayak workers were exposed to external (gamma and neutron) radiation, and in the radiochemical and plutonium plants to plutonium. In the preferred TSCE model, internal radiation and smoking act on the clonal expansion of pre-carcinogenic clones. Assuming a plutonium radiation weighting factor of 20, the excess relative risk per lung dose was estimated to be 0.11 (95% CI: 0.08; 0.17) Sv−1. Most of the lung cancer deaths are found to be due to smoking. The second main factor is the interaction of smoking and internal radiation. The model is sub-multiplicative in relative risks due to smoking and radiation. In a multiplicative version of the TSCE model, internal radiation acts on initiation and transformation rates. This model version agrees with conventional epidemiological risk models, because it also suggests a higher risk estimate than the preferred TSCE model. However, it fits the data less well than the preferred model. An erratum to this article can be found at  相似文献   

4.
The simulations in this paper show that exposure measurement error affects the parameter estimates of the biologically motivated two-stage clonal expansion (TSCE) model. For both Berkson and classical error models, we show that likelihood-based techniques of correction work reliably. For classical errors, the distribution of true exposures needs to be known or estimated in addition to the distribution of recorded exposures conditional on true exposures. Usually the exposure uncertainty biases the model parameters toward the null and underestimates the precision. But when several parameters are allowed to be dependent on exposure, e.g. initiation and promotion, then their relative importance is also influenced, and more complicated effects of exposure uncertainty can occur. The application part of this paper shows for two different types of Berkson errors that a recent analysis of the data for the Colorado plateau miners with the TSCE model is not changed substantially when correcting for such errors. Specifically, the conjectured promoting action of radon remains as the dominant radiation effect for explaining these data. The estimated promoting action of radon increases by a factor of up to 1.2 for the largest assumed exposure uncertainties.  相似文献   

5.
Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates.  相似文献   

6.
In this study the solid cancer mortality data in the Techa River Cohort in the Southern Urals region of Russia was analyzed. The cohort received protracted exposure in the 1950s due to the releases of radioactive materials from the Mayak plutonium complex. The Extended Techa River Cohort includes 29,849 people who resided along the Techa River between 1950 and 1960 and were followed from January 1, 1950 through December 31, 1999. The analysis was done within the framework of the biologically based two-stage clonal expansion (TSCE) model. It was found that about 2.6% of the 1854 solid cancer deaths (excluding 18 bone cancer cases) could be related to radiation exposure. At age 63, which is the mean age for solid cancer deaths, the excess relative risk (ERR) and excess absolute risk (EAR) were found to be 0.76 Gy(-1) (95% CI 0.23; 1.29) and 33.0 (10(4) PY Gy)(-1) (95% CI 9.8; 52.6), respectively. These risk estimates are consistent with earlier excess relative risk analyses for the same cohort. The change in the ERR with age was investigated in detail, and an increase in risk with attained age was observed. Furthermore, the data were tested for possible signs of genomic instability, and it was found that the data could be described equally well by a model incorporating effects of genomic instability. Results from the TSCE models indicated that radiation received at older ages might have stronger biological effects than exposure at younger ages.  相似文献   

7.
8.
This paper analyzes data for the osteosarcoma incidence in life-time experiments of (224)Ra injected mice with respect to the importance of initiating and promoting action of ionizing high LET-radiation. This was done with the biologically motivated two step clonal expansion (TSCE) model of tumor induction. Experimentally derived osteosarcoma incidence in 1,194 mice following exposure to (224)Ra with different total radiation doses and different fractionation patterns were analyzed together with incidence data from 1,710 unirradiated control animals. Effects of radiation on the initiating event and on the clonal expansion rate, i.e. on promotion were found to be necessary to explain the observed patterns with this model. The data show a distinct inverse protraction effect at high doses, whereas at lower doses this effect becomes insignificant. Such a behavior is well reproduced in the proposed model: At dose rates above 6 mGy/day a longer exposure produces higher ERR per dose, while for lower rates the reverse is the case. The TSCE model permits the deduction of several kinetic parameters of a postulated two-step bone tumorigenesis process. Mean exposure rates of 0.13 mGy/day are found to double the baseline initiation rate. At rates above 100 mGy/day, the initiation rate decreases. The clonal expansion rate is doubled at 8 mGy/day, and it levels out at rates beyond 100 mGy/day.  相似文献   

9.
The biologically based two-stage clonal expansion (TSCE) model is used to analyze lung cancer mortality of European miners from the Czech Republic, France, and Germany. All three cohorts indicate a highly significant action of exposure to radon and its progeny on promotion. The action on initiation is not significant in the French cohort. An action on transformation was tested but not found significant. In a pooled analysis, the results based on the French and German datasets do not differ significantly in any of the used parameters. For the Czech dataset, only lag time and two parameters that determine the clonal expansion without exposure and with low exposure rates (promotion) are consistent with the other studies. For low exposure rates, the resulting relative risks are quite similar. Exposure estimates for each calendar year are used. A model for random errors in each of these yearly exposures is presented. Depending on the used technique of exposure estimate, Berkson and classical errors are used. The consequences for the model parameters are calculated and found to be mostly of minor importance, except that the large difference in the exposure-induced initiation between the studies is decreased substantially.  相似文献   

10.
Lung cancer incidence among the atomic bomb survivors from Hiroshima and Nagasaki was analysed with the two-step clonal expansion (TSCE) model of carcinogenesis. For the baseline incidence, a new set of model parameters is introduced, which can be determined with a higher precision than the parameter sets previously used. The effect of temporal changes in the smoking behaviour on the lung cancer incidence is modelled by allowing initiation, inactivation and division rates of intermediate cells to depend on the year of birth. The TSCE model is further developed by implementing low-dose hypersensitivity in the survival of lung epithelial cells. According to the model fit to the data, the acute gamma exposure of the atomic bomb survivors does not only result in the conventional initiating effect, but also in a promoting effect for lung cancer. Compared to the model in which radiation acts merely on initiation, the new model is in better agreement with the age-at-exposure dependence in the data, and it does not predict an unexpected increase of the excess relative risk (ERR) at 40 years after exposure. According to the new model, the ERR at low doses increases non-linearly with dose, especially during the first 10 years after exposure to older persons.  相似文献   

11.
Data on liver tumors among 416 Swedish patients who were exposed to Thorotrast between 1930 and 1950 were analyzed with the biologically based two-step clonal expansion (TSCE) model. For background data, the Swedish Cancer Register for the follow-up period 1958 to 1997 was used. Effects of radiation on the initiating mutation and on the clonal expansion rate explained the observed patterns well. The TSCE model permits the deduction of several kinetic parameters of the postulated tumorigenesis process. Dose rates of 5 mGy/year double the spontaneous initiation rate. The clonal expansion rate is doubled by 80 mGy/year, and for females it reaches a plateau at dose rates beyond 240 mGy/year. For males the plateau is not significant. The magnitude of the estimated promoting effect of radiation can be explained with a moderate increase in the cell replacement probability for the intermediate cells in the liver, which is strikingly similar to the situation in lung tumorigenesis.  相似文献   

12.
Lung cancer mortality in the period of 1948-2002 has been analysed for 6,293 male workers of the Mayak Production Association, for whose information on smoking, annual external doses and annual lung doses due to plutonium exposures was available. Individual likelihoods were maximized for the two-stage clonal expansion (TSCE) model of carcinogenesis and for an empirical risk model. Possible detrimental and protective bystander effects on mutation and malignant transformation rates were taken into account in the TSCE model. Criteria for non-nested models were used to evaluate the quality of fit. Data were found to be incompatible with the model including a detrimental bystander effect. The model with a protective bystander effect did not improve the quality of fit over models without a bystander effect. The preferred TSCE model was sub-multiplicative in the risks due to smoking and internal radiation, and more than additive. Smoking contributed 57% to the lung cancer deaths, the interaction of smoking and radiation 27%, radiation 10%, and others cause 6%. An assessment of the relative biological effectiveness of plutonium was consistent with the ICRP recommended value of 20. At age 60 years, the excess relative risk (ERR) per lung dose was 0.20 (95% CI: 0.13; 0.40) Sv(-1), while the excess absolute risk (EAR) per lung dose was 3.2 (2.0; 6.2) per 10(4) PY Sv. With increasing age attained the ERR decreased and the EAR increased. In contrast to the atomic bomb survivors, a significant elevated lung cancer risk was also found for age attained younger than 55 years. For cumulative lung doses below 5 Sv, the excess risk depended linearly on dose. The excess relative risk was significantly lower in the TSCE model for ages attained younger than 55 than that in the empirical model. This reflects a model uncertainty in the results, which is not expressed by the standard statistical uncertainty bands.  相似文献   

13.
14.
Data sets of radon-exposed male rats from Wistar and Sprague-Dawley strains have been investigated with two different versions of the two-step clonal expansion (TSCE) model of carcinogenesis. These so-called initiation-promotion (IP) and initiation-transformation (IT) models are named after the cell-based processes that are assumed to be induced by radiation. The analysis was done with all malignant lung tumours taken to be incidental and with fatal tumours alone. For all tumours treated as incidental, both models could explain the tumour incidence data equally well. Owing to its better fit, only the IP model was applied in the analysis of fatal tumours that carry additional information on the time when they cause death. A statistical test rejected the hypothesis that a joint cohort of Wistar and Sprague-Dawley rats can be described with the same set of model parameters. Thus, the risk analysis has been carried out for the Wistar rats and the Sprague-Dawley rats separately and has been restricted to fatal tumours alone because of their similar effect in humans. Using a refined technique of age-adjustment, the lifetime excess absolute risk has been standardised with the survival function from competing risks in the control population. The age-adjusted excess risks for both strains of rats were of similar size, for animals with first exposure later in life they decreased markedly. For high cumulative exposure the excess risk increased with longer exposure duration, for low cumulative exposure it showed the opposite trend. In addition, high cumulative exposure exerted lethal effects other than lung cancer on the rats.  相似文献   

15.
This study is a comprehensive analysis of the latest follow-up of the Colorado uranium miners cohort using the two-stage clonal expansion model with particular emphasis on effects related to age and exposure. The model provides a framework in which the hazard function for lung cancer mortality incorporates detailed information on exposure to radon and radon progeny from hard rock and uranium mining together with information on cigarette smoking. Even though the effect of smoking on lung cancer risk is explicitly modeled, a significant birth cohort effect is found which shows a linear increase in the baseline lung cancer risk with birth year of the miners in the cohort. The analysis based on the two-stage clonal expansion model suggests that exposure to radon affects both the rate of initiation of intermediate cells in the pathway to cancer and the rate of proliferation of intermediate cells. However, in contrast to the promotional effect of radon, which is highly significant, the effect of radon on the rate of initiation is found to be not significant. The model is also used to study the inverse dose-rate effect. This effect is evident for radon exposures typical for mines but is predicted to be attenuated, and for longer exposures even reversed, for the more protracted and lower radon exposures in homes. The model also predicts the drop in risk with time after exposure ceases. For residential exposures, lung cancer risks are compared with the estimates from the BEIR VI report. While the risk estimates are in agreement with those derived from residential studies, they are about two- to fourfold lower than those reported in the BEIR VI report.  相似文献   

16.
Carcinogenesis in humans is thought to result from exposure to numerous environmental factors. Little is known, however, about how these different factors work in combination to cause cancer. Because thymic lymphoma is a good model of research for combined exposure, we examined the occurrence of mutations in thymic DNA following exposure of B6C3F1 gpt-delta mice to both ionizing radiation and N-ethyl-N-nitrosourea (ENU). Mice were exposed weekly to whole body X-irradiation (0.2 or 1.0 Gy), ENU (200 ppm) in the drinking water, or X-irradiation followed by ENU treatment. Thereafter, genomic DNA was prepared from the thymus and the number and types of mutations in the reporter transgene gpt was determined. ENU exposure alone increased mutant frequency by 10-fold compared to untreated controls and over 80% of mutants had expanded clonally. X-irradiation alone, at either low or high dose, unexpectedly, reduced mutant frequency. Combined exposure to 0.2 Gy X-rays with ENU dramatically decreased mutant frequency, specifically G:C to A:T and A:T to T:A mutations, compared to ENU treatment alone. In contrast, 1.0 Gy X-rays enhanced mutant frequency by about 30-fold and appeared to accelerate clonal expansion of mutated cells. In conclusion, repeated irradiation with 0.2 Gy X-rays not only reduced background mutation levels, but also suppressed ENU-induced mutations and clonal expansion. In contrast, 1.0 Gy irradiation in combination with ENU accelerated clonal expansion of mutated cells. These results indicate that the mode of the combined mutagenic effect is dose dependent.  相似文献   

17.
Significantly elevated lung cancer deaths and statistically significantly positive linear trends between leukemia mortality and radiation exposure were reported in a previous analysis of Portsmouth Naval Shipyard workers. The purpose of this study was to conduct a modeling-based analysis that incorporates previously unanalyzed confounders in exploring the exposure-response relationship between cumulative external ionizing radiation exposure and mortality from these cancers among radiation-monitored workers in this cohort. The main analyses were carried out with Poisson regression fitted with maximum likelihood in linear excess relative risk models. Sensitivity analyses varying model components and using other regression models were conducted. The positive association between lung cancer risk and ionizing radiation observed previously was no longer present after adjusting for socioeconomic status (smoking surrogate) and welding fume and asbestos exposures. Excesses of leukemia were found to be positively, though not significantly, associated with external ionizing radiation, with or without including potential confounders. The estimated excess relative risk was 10.88% (95% CI -0.90%, 38.77%) per 10 mSv of radiation exposure, which was within the ranges of risk estimates in previous epidemiological studies (-4.1 to 19.0%). These results are limited by many factors and are subject to uncertainties of the exposure and confounder estimates.  相似文献   

18.
OBJECTIVE--To study cause specific mortality of radiation workers with particular reference to associations between fatal neoplasms and level of exposure to radiation. DESIGN--Cohort study. SETTING--United Kingdom. SUBJECTS--95,217 radiation workers at major sites of the nuclear industry. MAIN OUTCOME MEASURE--Cause of death. RESULTS--Most standardised mortality ratios were below 100: 83 unlagged, 85 with a 10 year lag for all causes; 84 unlagged, 86 lagged for all cancers; and 80 for all known other causes, indicating a "healthy worker effect." The deficit of lung cancer (75 unlagged, 76 lagged) was significant at the 0.1% level. Standardised mortality ratios were significantly raised (214 unlagged, 303 lagged) for thyroid cancer, but there was no evidence for any trend with external recorded radiation dose. Dose of external radiation and mortality from all cancers were weakly correlated (p = 0.10), and multiple myeloma was more strongly correlated (p = 0.06); for leukaemia, excluding chronic lymphatic, the trend was significant (p = 0.03; all tests one tailed). The central estimates of lifetime risk derived from these data were 10.0% per Sv (90% confidence interval less than 0 to 24%) for all cancers and 0.76% per Sv (0.07 to 2.4%) for leukaemia (excluding chronic lymphatic leukaemia). These are, respectively, 2.5 times and 1.9 times the risk estimates recommended by the International Commission on Radiological Protection, but 90% confidence intervals are large and the commission''s risk factors fall well within the range. The positive trend with dose for all cancers, from which the risk estimate was derived, was not significant. The positive association between leukaemia (except chronic lymphatic leukaemia) was significant and robust in subsidiary analyses. This study showed no association between radiation exposure and prostatic cancer. CONCLUSION--There is evidence for an association between radiation exposure and mortality from cancer, in particular leukaemia (excluding chronic lymphatic leukaemia) and multiple myeloma, although mortality from these diseases in the study population overall was below that in the general population. The central estimates of risk from this study lie above the most recent estimates of the International Commission on Radiological Protection for leukaemia (excluding chronic lymphatic leukaemia) and for all malignancies. However, the commission''s risk estimates are well within the 90% confidence intervals from this study. Analysis of combined cohorts of radiation workers in the United States indicated lower risk estimates than the commission recommends, and when the American data are combined with our analysis the overall risks are close to those estimated by the commission. This first analysis of the National Registry for Radiation Workers does not provide sufficient evidence to justify a revision in risk estimates for radiological protection purposes.  相似文献   

19.
Cosmic radiation is an occupational risk factor for commercial aircrews. In this large European cohort study (ESCAPE) its association with cancer mortality was investigated on the basis of individual effective dose estimates for 19,184 male pilots. Mean annual doses were in the range of 2–5 mSv and cumulative lifetime doses did not exceed 80 mSv. All-cause and all-cancer mortality was low for all exposure categories. A significant negative risk trend for all-cause mortality was seen with increasing dose. Neither external and internal comparisons nor nested case-control analyses showed any substantially increased risks for cancer mortality due to ionizing radiation. However, the number of deaths for specific types of cancer was low and the confidence intervals of the risk estimates were rather wide. Difficulties in interpreting mortality risk estimates for time-dependent exposures are discussed.Abbreviations CI confidence interval - CLL chronic lymphatic leukemia - RRC radiation-related cancers - NRRC non-radiation-related cancers - RR relative risk - SMR standardized mortality ratio  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号